Skip to main content
Log in

Potential of Chestnut Wastes for Cosmetics and Pharmaceutical Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aqueous extraction of Castanea sativa underutilized parts (leaves, burs, husks) was proposed to obtain different soluble and insoluble fractions. The optimum extraction and concentration conditions were selected based on previously published studies. The extracts from leaves and husks were concentrated by membranes and those from burs were refined by adsorption–desorption to concentrate the active phenolic compounds showing radical scavenging capacity. A preliminary screening was made in order to explore the extracts’ pharmaceutical potential, evaluating the cell viability against representative human tumoral cells and the potential as a cosmetic ingredient was also evaluated for their inhibitory activities against collagenase, elastase and tyrosinase. In addition, chestnut husk ashes were used as an alternative source for potash production suitable to formulate potassium soaps with interesting mechanical properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

A549:

Epithelial lung adenocarcinoma cells

ABTS:

2,2′-Azinobis (3-ethyl-benzothiazoline-6-sulfonate)

BT474:

Breast cancer HER2+ cells

CB:

Chestnut burs

CBCE:

Chestnut burs concentrated extract

CBE:

Chestnut burs extract

CH:

Chestnut leaves

CHACE:

Chestnut husks ashes concentrated of extract

CHAE:

Chestnut husks ashes of extract

CHCE:

Chestnut husks concentrated extract

CHE:

Chestnut husks extract

CLCE:

Chestnut leaves concentrated extract

CLE:

Chestnut leaves extract

CsL:

Castanea sativa Leaves

DMSO:

Dimethyl sulfoxide

ECM:

Enzymes of the extracellular matrix

EGCG:

Epigallocatechin galate

GAE:

Gallic acid equivalent

HCT-116:

Colon carcinoma cells

HEL:

Eritroleukemia cells

HL60:

Acute promyelocytic leukemia cells

ICP-MS:

Inductively coupled plasma mass spectrometry

KG1:

Acute myeloid leukemia cells

L-DOPA:

3,4-Dihydroxy-l-phenylalanine

MCF7:

Breast cancer ER+ cells

MDA-MB-231:

Breast cancer cells

MMP-1:

Human recombinant collagenase

MMPs:

Matrix metalloproteinases

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCIH460:

Lung cancer cells

PBS:

Phosphate buffer saline

PSN1:

Pancreatic adenocarcinoma cells

ROS:

Reactive oxygen species

SKBr3:

Breast cancer HER2+ cells

T98G:

Caucasian human glioblastoma cells

References

  1. Abdul Karim, A., Azlan, A., Ismail, A., Hashim, P., Abd Gani, S.S., Zainudin, B.H., Abdullah, N.A.: Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Compl. Alt. Med. 14, 381 (2014)

    Article  Google Scholar 

  2. Almeida, I.F., Valentão, P., Andrade, P.B., Seabra, R.M., Pereira, T.M., Amaral, M.H., Costa, P.C., Bahia, M.F.: In vivo skin irritation potential of a Castanea sativa (chestnut) leaf extract, a putative natural antioxidant for topical application. Basic Clin. Pharmacol. 103, 461–467 (2008)

    Article  Google Scholar 

  3. Balboa, E.M., Soto, M.L., Nogueira, D.R., González-López, N., Conde, E., Moure, A., Vinardell, M.P., Mitjans, M., Domínguez, H.: Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crop. Prod. 58, 104–110 (2014)

    Article  Google Scholar 

  4. Barreira, J.C.M., Ferreira, I.C.F.R., Oliveira, M.B.P.P., Pereira, J.A.: Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 107, 1106–1113 (2008)

    Article  Google Scholar 

  5. Braga, N., Rodrigues, F., Beatriz, M., Oliveira, P.P.: Castanea sativa by-products: a review on added value and sustainable application. Nat. Prod. Res. 29(1), 1–18 (2015)

    Article  Google Scholar 

  6. Calliste, C.A., Trouillas, P., Allais, D.P., Duroux, J.L.: Castanea sativa Mill. leaves as new sources of natural antioxidant: an Electronic Spin Resonance Study. J. Agric. Food Chem. 53, 282–288 (2005)

    Article  Google Scholar 

  7. Chen, C.-Y., Lin, L.-C., Yang, W.-F., Bordon, J., Wang, H.-M.D.: An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Pharm. Des. 19, 4–18 (2015)

    Google Scholar 

  8. Chiang, H.M., Chen, H.C., Lin, T.J., Shih, I.C., Wen, K.C.: Michelia alba extract attenuates UVB-induced expression of matrix metalloproteinases via MAP kinase pathway in human dermal fibroblasts. Food Chem. Toxicol. 50, 4260–4269 (2012)

    Article  Google Scholar 

  9. Conde, E., Moure, A., Domínguez, H., Gordon, M.H., Parajó, J.C.: Purified phenolics from hydrothermal treatments of biomass: ability to protect sunflower bulk oil and model food emulsions from oxidation. J. Agric. Food Chem. 59, 9158–9165 (2011)

    Article  Google Scholar 

  10. Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci. Technol. 44, 436–442 (2011)

    Article  Google Scholar 

  11. Díaz-Reinoso, B., Couto, D., Moure, A., Fernandes, E., Domínguez, H., Parajó, J.C.: Optimization of antioxidants extraction from Castanea sativa leaves. Chem. Eng. J. 203, 101–109 (2012)

    Article  Google Scholar 

  12. Díaz-Reinoso, B., Moure, A., Domínguez, H., Parajó, J.C.: Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chem. Eng. J. 175(1), 95–102 (2011)

    Article  Google Scholar 

  13. González-López, N., Moure, A., Domínguez, H.: Hydrothermal fractionation of Sargassum muticum biomass. J. Appl. Phycol. 24, 1569–1578 (2012)

    Article  Google Scholar 

  14. González-López, N., Moure, A., Domínguez, H., Parajó, J.C.: Valorization of chestnut husks by non-isothermal hydrolysis. Ind. Crop. Prod. 36, 172–176 (2011)

    Article  Google Scholar 

  15. Gullón, B., Eibes, G., Dávila, I., Moreira, M.T., Labidi, J., Gullón, P.: Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydr. Polym. 192, 75–83 (2018)

    Article  Google Scholar 

  16. Hrenn, A., Steinbrecher, T., Labahn, A., Schwager, J., Schempp, C.M., Merfort, I.: Plant phenolics inhibit neutrophil elastase. Plant. Med. 72, 1127–1131 (2006)

    Article  Google Scholar 

  17. Hwang, J.H., Lee, B.M.: Inhibitory effects of plant extracts on tyrosinase, l-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A. 70, 393–407 (2007)

    Article  Google Scholar 

  18. Ince, M., Ince, O.K., Asam, E., Önal, A.: Using food waste biomass as effective adsorbents in water and wastewater treatment for Cu(II) removal. Atom. Spectrosc. 38, 142–148 (2017)

    Google Scholar 

  19. Kim, H.H., Kim, D.H., Oh, M.H., Park, K.J., Heo, J.H., Lee, M.W.: Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells. Arch. Pharmacal. Res. 38, 11–17 (2015)

    Article  Google Scholar 

  20. Kim, M., Park, J., Song, K., Kim, H.G., Koh, J.-S., Boo, Y.C.: Screening of plant extracts for human tyrosinase inhibiting effects. Int. J. Cosmetic Sci. 34, 202–208 (2012)

    Article  Google Scholar 

  21. Kolakul, P., Sripanidkulchai, B.: Phytochemicals and anti-aging potentials of the extracts from Lagerstroemia speciosa and Lagerstroemia floribunda. Ind. Crop. Prod. 109, 707–716 (2017)

    Article  Google Scholar 

  22. Lenzi, M., Malaguti, M., Cocchi, V., Hrelia, S., Hrelia, P.: Castanea sativa Mill bark extract exhibits chemopreventive properties triggering extrinsic apoptotic pathway in Jurkat cells. BMC Compl. Alt. Med. 17, 251 (2017)

    Article  Google Scholar 

  23. Moody, J.O., Adebiyi, O.A., Adeniyi, B.A.: Do Aloe vera and Ageratum conyzoides enhance the anti-microbial activity of tradicional medicinal soft soaps (Osedudu)? J. Ethnopharmacol. 92, 57–60 (2004)

    Article  Google Scholar 

  24. Moreira, R., Chenlo, F., Torres, M.D.: Effect of shortenings on the rheology of gluten-free doughs: study of chestnut flour with chia flour, olive and sunflower oils. J. Text. Stud. 43(5), 375–383 (2012)

    Article  Google Scholar 

  25. Moure, A., Conde, E., Falqué, H.Domínguez, Parajó, J.C.: Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Res. Int. 65, 359–366 (2014)

    Article  Google Scholar 

  26. Pinto, D., Rodrigues, F., Braga, N., Santos, J., Pimentel, F.B., Palmeira-De-Oliveira, A., Oliveira, M.B.P.P.: The Castanea sativa bur as a new potential ingredient for nutraceutical and cosmetic outcomes: preliminary studies. Food Funct. 8(1), 201–208 (2017)

    Article  Google Scholar 

  27. Pinto, D., Rodrigues, F., Braga, N., Santos, J., Pimentel, F.B., Palmeira-de-Oliveira, A.: The Castanea sativa bur as a new potential ingredient for nutraceutical and cosmetic outcomes: preliminary studies. Food Funct. 8, 201–208 (2017)

    Article  Google Scholar 

  28. Sahasrabudhe, A., Deodhar, M.: Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int. J. Bot. 6, 299–303 (2010)

    Article  Google Scholar 

  29. Singleton, V.L., Rossi, J.A.: Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)

    Google Scholar 

  30. Squillaci, G., Apone, F., Sena, L.M., Carola, A., Tito, A., Bimonte, M., Lucia, A.D., Colucci, G., Cara, F.L., Morana, A.: Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 64, 228–236 (2018)

    Article  Google Scholar 

  31. Talos-Nebehaj, E., Hofmann, T., Albert, L.: Seasonal changes of natural antioxidant content in the leaves of Hungarian forest trees. Ind. Crops Prod. 98, 53–59 (2017)

    Article  Google Scholar 

  32. Torres, M.D., Seijo, J.: By-products from the chestnut industry used to produce natural potassium soaps: physicochemical properties. J. Surfactants Deterg. 19, 381–387 (2016)

    Article  Google Scholar 

  33. Torres, M.D., Arufe, S., Chenlo, F., Moreira, R.: Coeliacs cannot live by gluten-free bread alone—every once in awhile they need antioxidants. Int. J. Food Sci. Technol. 52(1), 81–90 (2017)

    Article  Google Scholar 

  34. Vázquez, G., Fernández-Agulló, A., Gómez-Castro, C., Freire, M.S., Antorrena, G., González-Álvarez, J.: Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Ind. Crops Prod. 35, 126–134 (2012)

    Article  Google Scholar 

  35. Vázquez, G., Fontenla, E., Santos, J., Freire, M.S., González-Álvarez, J., Antorrena, G.: Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crops Prod. 28, 279–285 (2008)

    Article  Google Scholar 

  36. Wittenauer, J., MäcKle, S., Sußmann, D., Schweiggert-Weisz, U., Carle, R.: Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 101, 179–187 (2015)

    Article  Google Scholar 

  37. Zamuz, S., López-Pedrouso, M., Barba, F.J., Lorenzo, J.M., Domínguez, H., Franco, D.: Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 112, 263–273 (2018)

    Article  Google Scholar 

  38. Živković, J., Mujić, I., Zeković, Z., Vidovic, S., Mujić, A., Jokić, S.: Radical scavenging, antimicrobial activity and phenolic content of Castanea sativa extracts. J. Cent. Eur. Agr. 10, 175–182 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Xunta de Galicia (FEADER 2016/23B and CINBIO). Both projects were partially funded by the FEDER Program of the European Union (“Unha maneira de facer Europa”). M.D.T. thanks Spanish Ministry of Economy and Competitiveness for her postdoctoral grant (IJCI-2016-27535). N.F.F. and S.G. thank CINBIO (Centro singular de investigación de Galicia accreditation 2016–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flórez-Fernández, N., Torres, M.D., Gómez, S. et al. Potential of Chestnut Wastes for Cosmetics and Pharmaceutical Applications. Waste Biomass Valor 11, 4721–4730 (2020). https://doi.org/10.1007/s12649-019-00784-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00784-w

Keywords

Navigation