Skip to main content
Log in

Waste Euryale ferox Salisb. Leaves as a Potential Source of Anthocyanins: Extraction Optimization, Identification and Antioxidant Activities Evaluation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, the waste leaves of Euryale ferox Salisb. as a potential source of anthocyanins was investigated. Ultrasound-assisted technique with Box–Behnken design was applied for optimization of the anthocyanins extraction from Euryale ferox leaves. As a result, the optimal extraction condition was as follows: ultrasound temperature was 40 °C, ultrasound time was 38 min, ethanol concentration was 62% (v/v) and solvent-to-solid ratio was 27 mL/g. And the maximum yield of anthocyanins was 281.56 ± 3.02 mg/100 g under the optimum extraction parameters. The experimental data was close to the predicted anthocyanins yields of 289.45 mg/100 g and significantly higher than the yield of 181.81 ± 1.94 mg/100 g obtained by conventional solvent extraction. Moreover, the result of HPLC-QTOF-MS/MS analysis identified nineteen compounds in the purified anthocyanins extracts. And the anthocyanins extracts exhibited high scavenging activities on α,α-diphenyl-β-picrylhydrazyl and 2,2′-azinobis- (3-ethylbenzthiazoline-6-sulphonic acid) radicals. Results implied that Ultrasound-assisted extraction was a suitable method for anthocyanins extraction from Euryale ferox leaves with good antioxidant activities, and Euryale ferox leaves could be a potential source of natural anthocyanins used as antioxidant in functional food or medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Editorial Committee for Chinese Herbal Medicine of State Administration of Traditional Chinese Medicine: Chinese Herbal Medicine. Shanghai Science and Technology Press, Shanghai (1999)

  2. Rai, U., Tripathi, R., Vajpayee, P., Jha, V., Ali, M.: Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb. (Makhana). Chemosphere 46(2), 267–272 (2002)

    Google Scholar 

  3. Xu, X., Liu, X., Li, L.J.: Reaearch progress of Euryale ferox. J. Chang. Veg. 18, 62–68 (2017)

    Google Scholar 

  4. Li, L.J., Wu, Y., Cao, B.: Research progress of Euryale ferox seed. China Veg. (Plus) 81–83 (2007)

  5. Shankar, M.: A review on gorgon nut. Int. J. Pharmaceut. Biol. Arch. 1(2), 101–107 (2010)

    Google Scholar 

  6. Yang, R.Z., Wei, X.L., Gao, F.F., Wang, L.S., Zhang, H.J., Xu, Y.J., Li, C.H., Ge, Y.X., Zhang, J.J., Zhang, J.: Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry. J. Chromatogr. A. 1216(1), 106–112 (2009)

    Google Scholar 

  7. Kondo, E., Nakayama, M., Kameari, N., Tanikawa, N., Morita, Y., Akita, Y., Hase, Y., Tanaka, A., Ishizaka, H.: Red-purple flower due to delphinidin 3, 5-diglucoside, a novel pigment for Cyclamen spp., generated by ion-beam irradiation. Plant Biotechnol. 26, 565–569 (2009)

    Google Scholar 

  8. Rodriguez-Saona, L.E., Wrolstad, R.E.: Extraction, isolation, and purification of anthocyanins. In: Wrolstad, R.E. (ed.) Current Protocols in Food Analytical Chemistry. Wiley, New York (2001).

  9. Delgado-Vargas, F., Jiménez, A.R., Paredes-López, O.: Natural pigments: carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. 40(3), 173–289 (2000)

    Google Scholar 

  10. Zhang, M., Ma, J., Bi, H., Song, J., Yang, H., Xia, Z., Du, Y., Gao, T., Wei, L.: Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products. Food Funct. 8(8), 2771–2782 (2017)

    Google Scholar 

  11. Venancio, V.P., Cipriano, P.A., Kim, H., Antunes, L.M., Talcott, S.T., Mertens-Talcott, S.U.: Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct. 8(1), 307–314 (2017)

    Google Scholar 

  12. Chen, Z., Wang, C., Pan, Y., Gao, X., Chen, H.: Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct. 9(1), 426–439 (2018)

    Google Scholar 

  13. Fernandes, I., Faria, A., Calhau, C., de Freitas, V., Mateus, N.: Bioavailability of anthocyanins and derivatives. J. Funct. Foods 7, 54–66 (2014)

    Google Scholar 

  14. Santos-Buelga, C., Mateus, N., De Freitas, V.: Anthocyanins. Plant pigments and beyond. J. Agric. Food Chem. 62(29), 6879–6884 (2014)

    Google Scholar 

  15. Harakotr, B., Suriharn, B., Tangwongchai, R., Scott, M.P., Lertrat, K.: Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chem. 164, 510–517 (2014)

    Google Scholar 

  16. Chen, L., Yang, M., Mou, H., Kong, Q.: Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. J. Food Process. Pres. 42(1), e13377 (2018)

    Google Scholar 

  17. Maran, J.P., Priya, B., Manikandan, S.: Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. Tech. 51(9), 1938–1946 (2014)

    Google Scholar 

  18. Wen, Y., Chen, H., Zhou, X., Deng, Q., Zhao, Y., Zhao, C., Gong, X.: Optimization of the microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. RSC Adv. 5(25), 19686–19695 (2015)

    Google Scholar 

  19. Varo, M.A., Jacotet-Navarro, M., Serratosa, M.P., Mérida, J., Fabiano-Tixier, A.S., Bily, A., Chemat, F.: Green ultrasound-assisted extraction of antioxidant phenolic compounds determined by high performance liquid chromatography from bilberry (Vaccinium Myrtillus L.) juice by-products. Waste Biomass Valo. (2018)

  20. He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L., Yue, P.X.: Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016)

    Google Scholar 

  21. Mane, S., Bremner, D.H., Tziboula-Clarke, A., Lemos, M.A.: Effect of ultrasound on the extraction of total anthocyanins from Purple Majesty potato. Ultrason. Sonochem. 27, 509–514 (2015)

    Google Scholar 

  22. Lee, M.S., Kerns, E.H.: LC/MS applications in drug development. Mass Spectrom. Rev. 18(3–4), 187–279 (1999)

    Google Scholar 

  23. Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A.: Chemical studies of anthocyanins: a review. Food Chem. 113(4), 859–871 (2009)

    Google Scholar 

  24. Nipornram, S., Tochampa, W., Rattanatraiwong, P., Singanusong, R.: Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem. 241, 338–345 (2018)

    Google Scholar 

  25. Sang, J., Sang, J., Ma, Q., Hou, X.F., Li, C.Q.: Extraction optimization and identification of anthocyanins from Nitraria tangutorun Bobr seed meal and establishment of a green analytical method of anthocyanins. Food Chem. 218, 386–395 (2017)

    Google Scholar 

  26. Giusti, M.M., Wrolstad, R.E.: Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad, R.E. (ed.) Current Protocols in food Analytical Chemistry, pp. F:F1:F1.2. Wiley, New York (2001).

  27. Cui, C., Zhang, S., You, L., Ren, J., Luo, W., Chen, W., Zhao, M.: Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem. 139(1–4), 1–8 (2013)

    Google Scholar 

  28. Wang, X., Wu, Q., Wu, Y., Chen, G., Yue, W., Liang, Q.: Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules 17(6), 6769–6783 (2012)

    Google Scholar 

  29. Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M.: Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017)

    Google Scholar 

  30. Dranca, F., Oroian, M.: Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 31, 637–646 (2016)

    Google Scholar 

  31. Sheng, Z.L., Wan, P.F., Dong, C.L., Li, Y.H.: Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind. Crop. Prod. 43, 778–786 (2013)

    Google Scholar 

  32. Aguiló-Aguayo, I., Walton, J., Viñas, I., Tiwari, B.K.: Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT-Food Sci. Technol. 77, 92–99 (2017)

    Google Scholar 

  33. Zhu, Z., Guan, Q., Guo, Y., He, J., Liu, G., Li, S., Barba, F.J., Jaffrin, M.Y.: Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int. Agrophys. 30(1), 113–122 (2016)

    Google Scholar 

  34. Maran, J.P., Priya, B., Al-Dhabi, N.A., Ponmurugan, K., Moorthy, I.G., Sivarajasekar, N.: Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason. Sonochem. 35(Pt A), 204–209 (2017)

    Google Scholar 

  35. Chavan, Y., Singhal, R.S.: Ultrasound-assisted extraction (UAE) of bioactives from arecanut (Areca catechu L.) and optimization study using response surface methodology. Innov. Food Sci. Emerg. 17, 106–113 (2013)

    Google Scholar 

  36. Cheok, C., Chin, N., Yusof, Y., Talib, R., Law, C.: Anthocyanin recovery from mangosteen (Garcinia mangostana L.) hull using lime juice acidified aqueous methanol solvent extraction. Food Sci. Technol. Res. 19(6), 971–978 (2013)

    Google Scholar 

  37. Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li, S., Li, H.B.: Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem. 217, 552–559 (2017)

    Google Scholar 

  38. Gogate, P.R., Pandit, A.B.: Sonochemical reactors: scale up aspects. Ultrason. Sonochem. 11(3–4), 105–117 (2004)

    Google Scholar 

  39. Moorthy, I.G., Maran, J.P., Ilakya, S., Anitha, S.L., Sabarima, S.P., Priya, B.: Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 34, 525–530 (2017)

    Google Scholar 

  40. Yolmeh, M., Habibi Najafi, M.B., Farhoosh, R.: Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 155, 319–324 (2014)

    Google Scholar 

  41. Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z.: Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry. Ultrason. Sonochem. 14(6), 767–778 (2007)

    Google Scholar 

  42. Ghafari, S., Aziz, H.A., Isa, M.H., Zinatizadeh, A.A.: Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 163(2–3), 650–656 (2009)

    Google Scholar 

  43. Buchweitz, M., Speth, M., Kammerer, D., Carle, R.: Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins. Food Chem. 141(3), 2998–3006 (2013)

    Google Scholar 

  44. Duymuş, H.G., Göger, F., Başer, K.H.C.: In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 155, 112–119 (2014)

    Google Scholar 

  45. Fraige, K., Pereira-Filho, E.R., Carrilho, E.: Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD-MS and exploratory analysis by principal component analysis. Food Chem. 145, 395–403 (2014)

    Google Scholar 

  46. Garzón, G.A., Narváez-Cuenca, C.E., Vincken, J.P., Gruppen, H.: Polyphenolic composition and antioxidant activity of acai (Euterpe oleracea Mart.) from Colombia. Food Chem. 217, 364–372 (2017)

    Google Scholar 

  47. Im, S.E., Nam, T.G., Lee, H., Han, M.W., Heo, H.J., Koo, S.I., Lee, C.Y., Kim, D.O.: Anthocyanins in the ripe fruits of Rubus coreanus Miquel and their protective effect on neuronal PC-12 cells. Food Chem. 139(1), 604–610 (2013)

    Google Scholar 

  48. Kajdžanoska, M., Gjamovski, V., Stefova, M.: HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. En. 29(2), 181–194 (2010)

    Google Scholar 

  49. Picariello, G., Ferranti, P., Garro, G., Manganiello, G., Chianese, L., Coppola, R., Addeo, F.: Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties. Food Chem. 146, 15–22 (2014)

    Google Scholar 

  50. Ruiz, A., Hermosín-Gutiérrez, I., Vergara, C., von Baer, D., Zapata, M., Hitschfeld, A., Obando, L., Mardones, C.: Anthocyanin profiles in south patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 51(2), 706–713 (2013)

    Google Scholar 

  51. Sun, J., Liu, X., Yang, T., Slovin, J., Chen, P.: Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 146, 289–298 (2014)

    Google Scholar 

  52. Noipa, T., Srijaranai, S., Tuntulani, T., Ngeontae, W.: New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food Res. Int. 44(3), 798–806 (2011)

    Google Scholar 

  53. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., MinYang, Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26(9–10), 1231–1237 (1999).

  54. Xu, Y.J.: Studies on the isolation, structure elucidation and bioactivity of anthocyanins from waxberry and mulberry. Zhejiang Gongshang University, Master's degree (2007)

    Google Scholar 

  55. Meyer, A.S., Heinonen, M., Frankel, E.N.: Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem. 61(1/2), 71–75 (1998)

    Google Scholar 

  56. Coklar, H., Akbulut, M.: Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. J. Funct. Foods 35, 166–174 (2017)

    Google Scholar 

  57. Huang, W.Y., Wu, H., Li, D.J., Song, J.F., Xiao, Y.D., Liu, C.Q., Zhou, J.Z., Sui, Z.Q.: Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells. J. Agric. Food Chem. 66(7), 1638–1648 (2018)

    Google Scholar 

  58. Abou-Arab, A.A., Abu-Salem, F.M., Abou-Arab, E.A.: Physico-chemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus subdariffa). J. Am. Sci. 7(7), 445–456 (2011)

    Google Scholar 

  59. Sang, J., Zhang, Y., Sang, J., Li, C.Q.: Anthocyanins from Nitraria tangutorun: qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids. J. Food Meas. Charact. 13(1), 421–430 (2018)

    Google Scholar 

  60. Lachman, J., Hamouz, K., Šulc, M., Orsák, M., Pivec, V., Hejtmánková, A., Dvořák, P., Čepl, J.: Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 114(3), 836–843 (2009)

    Google Scholar 

  61. Kähkönen, M.P., Heinonen, M.: Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51(3), 628–633 (2003)

    Google Scholar 

  62. Stintzing, F.C., Stintzing, A.S., Carle, R., Frei, B., Wrolstad, R.E.: Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 50(21), 6172–6181 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China during the “12th Five-Year Plan” (2011BAI04B06), the Funds of Innovative Research Team in Research on Resource Chemistry of Traditional Chinese Medicine of Jiangsu High Education Institution of China (2011), and “Six Talent Peaks Program” of Jiangsu Province of China (2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Ying Wu or Qi-Nan Wu.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CY., Wang, H., Fan, XH. et al. Waste Euryale ferox Salisb. Leaves as a Potential Source of Anthocyanins: Extraction Optimization, Identification and Antioxidant Activities Evaluation. Waste Biomass Valor 11, 4327–4340 (2020). https://doi.org/10.1007/s12649-019-00762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00762-2

Keywords