Skip to main content

Advertisement

Log in

Towards Zero-waste Recovery of Bioactive Compounds from Catfish (Pangasius hypophthalmus) By-products Using an Enzymatic Method

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Catfish (Pangasius hypophthalmus) is one of the main seafood products of Vietnam with a large amount of over 1.3 million tons in 2018. However, after the processing, large amount of the harvested catfish is considered as by-products. In this study, catfish by-products have been used to produce three bioactive components, including fish protein hydrolysate (FPH), hydroxyapatite (HA) and lipid fraction by an enzymatic method. The fish by-products were hydrolyzed by using an Alcalase-substrate ratio of 0.4% (v/w) at 60 °C and natural pH for 9 h with a water-raw material ratio of 1:1 (mL/g). The results show that the protein hydrolysate has degree of hydrolysis (DH) of over 30%, nitrogen recovery (NR) of over 80% and contained a large amount of essential amino acids. HA particles have a size of 50–70 nm with high porosity and quite uniformity, suggesting its potential applications such as bone scaffold or regenerative materials. The lipid fraction has high vitamin A content with a small amount of fatty acids (ca. 90 mg/g) that can be refined for further food applications. This recovery method is simple, environmentally-friendly and can be scale-up easily. In addition, the cheap fish by-products were processed to give value-added products as well as reduce the undesirable environmental impact.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dekkers, E., Raghavan, S., Kristinsson, H.G., Marshall, M.R.: Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chem. 124, 640–645 (2011)

    Article  Google Scholar 

  2. Ishak, N.H., Sarbon, N.M.: A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess. Technol. 11, 2–16 (2018)

    Article  Google Scholar 

  3. Samaranayaka, A.G.P., Li-Chan, E.C.Y.: Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107, 768–776 (2008)

    Article  Google Scholar 

  4. Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014)

    Article  Google Scholar 

  5. Gehring, C.K., Gigliotti, J.C., Moritz, J.S., Tou, J.C., Jaczynski, J.: Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: a review. Food Chem. 124, 422–431 (2011)

    Article  Google Scholar 

  6. Kristinsson, H.G., Rasco, B.A.: Fish protein hydrolysates: production, biochemical, and functional properties. Food Sci. Nutr. 40, 43–81 (2000)

    Google Scholar 

  7. Idowu, A.T., Benjakul, S., Sinthusamran, S., Sookchoo, P., Kishimura, H.: Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J. Food Biochem. (2018). https://doi.org/10.1111/jfbc.12734

    Article  Google Scholar 

  8. Sillero, Z.J., Kütter, M.T., Tesser, M.B., Monserrat, J.M., Prentice, C.: Effect of dietary common carp by-product protein hydrolysates on antioxidant status in different organs of zebrafish (Danio rerio). Aquac. Nutr. (2018). https://doi.org/10.1111/anu.12835

    Article  Google Scholar 

  9. See, S.F., Hoo, L.L., Babji, A.S.: Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. Int. Food Res. J. 18(4), 1359–1365 (2011)

    Google Scholar 

  10. Roslana, J.M.D., Yunosa, K.F., Abdullahb, N., Kamal, S.M.M.: Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agric. Agric. Sci. Procedia 2, 312–319 (2014)

    Google Scholar 

  11. Amiza, M.A., Nurul, A.S., Faazaz, A.L.: Optimization of enzymatic protein hydrolysis from silver catfish (Pangasius sp.) frame. Int. Food Res. J. 18, 775–781 (2011)

    Google Scholar 

  12. Minh, N.P.: Utilization of Pangasius hypophthalmus by-product to produce protein hydrolysate using alcalase enzyme. J. Harmon. Res. Appl. Sci. 2, 250–256 (2014)

    Google Scholar 

  13. Herpandi, H., Rosma, A., Nadiah, W.A.W., Febrianto, N.A., Huda, N.: Optimization of enzymatic hydrolysis of skipjack tuna by-product using protamex®: a response surface approach. J. Fundam. Appl. Sci. 9, 845–860 (2017)

    Article  Google Scholar 

  14. Mohammad, A.W., Kumar, A.G., Basha, R.K.: Optimization of enzymatic hydrolysis of tilapia (Oreochromis spp.) scale gelatine. Int. Aquat. Res. 7, 27–39 (2015)

    Article  Google Scholar 

  15. Fonseca, R.A.S., Silva, C.M., Fernandes, G.R., Prentice, C.: Enzymatic hydrolysis of cobia (Rachycentron canadum) meat and wastes using different microbial enzymes. Int. Food Res. J. 23(1), 152–160 (2016)

    Google Scholar 

  16. Vázquez, J.A., Blanco, M., Massa, A.E., Amado, I.R., Martín, R.I.P.: Production of fish protein hydrolysates from Scyliorhinus canicula discards with antihypertensive and antioxidant activities by enzymatic hydrolysis and mathematical optimization using response surface methodology. Mar. Drugs 15, 306–321 (2017)

    Article  Google Scholar 

  17. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 32, 478–486 (2012)

    Article  Google Scholar 

  18. Venkatesan, J., Qian, Z.J., Ryu, B.M., Thomas, N.V., Kim, S.K.: A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed. Mater. 6, 035003–0350015 (2011)

    Article  Google Scholar 

  19. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522–532 (2013)

    Article  Google Scholar 

  20. Goodwin, J.F.: The colorimetric estimation of plasma amino nitrogen with DNFB. Clin. Chem. 14, 1080 (1968)

    Article  Google Scholar 

  21. Benjakul, S., Morrissey, M.T.: Protein hydrolysates from pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423–3430 (1997)

    Article  Google Scholar 

  22. Fu, H., Shieh, D., Ho, C.: Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 9, 35–46 (2002)

    Article  Google Scholar 

  23. Christie, W.W.: Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis, 4th edn, p. 416. The Oily Press, Bridgwater (2003)

    Google Scholar 

  24. Slizytea, R., Dauks, E., Falcha, E., Storrøa, I., Rustad, T.: Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochem. 40, 1415–1424 (2005)

    Article  Google Scholar 

  25. Guerard, F., Guimas, L., Binet, A.: Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B 19–20, 489–498 (2002)

    Article  Google Scholar 

  26. Cheftel, C., Ahern, M., Wang, D.I.C., Tannenbaum, S.R.: Enzymic solubilization of fish protein concentrate: batch studies applicable to continuous enzyme recycling processes. J. Agric. Food Chem. 19, 155–161 (1971)

    Article  Google Scholar 

  27. Fik, M., Surowka, K.: Preparation and properties of protein concentrate from broiler chicken heads. J. Sci. Food Agric. 37, 445 (1986)

    Article  Google Scholar 

  28. Diniz, F.M., Martin, A.M.: Influence of process variables on the hydrolysis of shark muscle protein. Food Sci. Technol. Int. 4, 91–98 (1998)

    Article  Google Scholar 

  29. Violet, M., Meunier, J.C.: Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase. Biochem. J. 263, 665–670 (1989)

    Article  Google Scholar 

  30. dos Santos, S.D., Martins, V.G., Salas-Mellado, M., Prentice, C.: Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol. 4, 1399–1406 (2011)

    Article  Google Scholar 

  31. Theodore, A.E., Raghavan, S., Kristinsson, H.G.: Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J. Agric. Food Chem. 56, 7459–7466 (2008)

    Article  Google Scholar 

  32. Monmaturapoj, N., Yatongchai, C.: Effect of sintering on microstructure and properties of hydroxyapatite produced by different synthesizing methods. J Met. Mater. Miner. 20, 53–61 (2010)

    Google Scholar 

  33. Manalu, J.L., Soegijono, B., Indrani, D.J.: Study of mg-hydroxyapatite composite with various composition of hydroxyapatite which obtained from cow bones in simulation body fluid (SBF). Asian J. Appl. Sci. 3, 810–816 (2016)

    Google Scholar 

  34. Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Fihri, A., Djessas, K., Solhy, A.: Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. J. CrystEngComm 16, 543–549 (2013)

    Article  Google Scholar 

  35. Sunil, B.R., Jagannatham, M.: Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 185, 411–414 (2016)

    Article  Google Scholar 

  36. Luna-Zaragoza, D., Romero-Guzmán, E.T., Reyes-Gutiérrez, L.R.: Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite, Ca5(PO4)3OH. J. Miner. Mater. Charac. Eng. 8, 591–609 (2009)

    Google Scholar 

  37. Lu, H.B., Campbell, C.T., Graham, D.J., Ratner, B.D.: Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal. Chem. 72, 2886–2894 (2000)

    Article  Google Scholar 

  38. Araújo, K.L.G.V., Epaminondas, P.S., Silva, M.C.D., de Lima, A.E.A., Rosenhaim, R., Maia, A.S., Soledade, L.E.B., Souza, A.L., Santos, I.M.G., Souza, A.G., Queiroz, N.: Influence of thermal degradation in the physicochemical properties of fish oil. J. Therm. Anal. Calorim. 106, 557–561 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Van Hoa or Trang Si Trung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, P.V., Van Hoa, N., Anh, T.T.L. et al. Towards Zero-waste Recovery of Bioactive Compounds from Catfish (Pangasius hypophthalmus) By-products Using an Enzymatic Method. Waste Biomass Valor 11, 4195–4206 (2020). https://doi.org/10.1007/s12649-019-00758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00758-y

Keywords

Navigation