Skip to main content
Log in

Characterization of Poultry Litter Ash in View of Its Valorization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 31 July 2019

This article has been updated

Abstract

The overall aim of this research was to evaluate the valorization potential of the poultry litter ash produced in the biomass power plant of BMC Moerdijk (the Netherlands), since the ash contains phosphorus (P) and potassium (K), which are both essential nutrients. As a first step, the ash was characterized by means of chemical analysis. Ash collected in the superheater section of the boiler had the highest P concentration (10.6%). Furthermore, the P concentration in the ash decreased as it was collected further downstream in the boiler and flue gas cleaning part of the installation. K showed an opposite concentration trend, that is, its concentration was the lowest in the superheater ash (9.4%) and increased to 15.5% in the electrostatic precipitator ash. Based on the results of the chemical analysis, different valorization options could be considered. Although poultry litter ash has the same heavy metal/P ratio as poultry litter and is free of pathogens and toxic organic substances, its recycling as a P/K fertilizer is hindered by legal constraints. Furthermore, the use of the ash in/as animal feed is not straightforward because of its origin (animal feces) and waste status. Besides P and K, other ash elements such as calcium, silicon, magnesium, iron and aluminum can also be valorized, for example by using the ash as building material or in cement production. However, in these applications the high P and K concentration of the ash can be a technical obstacle rather than a benefit. In this regard, it can be interesting to separate the fertilizer elements, that is, P and K, from the rest of the ash by means of for example a wet chemical extraction after which the remaining solid residue better meets the composition requirements for building material or raw material for cement production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 31 July 2019

    Unfortunately, Table 1 was published incorrectly in the original publication of the article. The correct version of Table 1 is provided here

References

  1. de Haes, U., Jansen, J., van der Weijden, W., Smit, A.: Fosfaat-van te veel naar tekort. Beleidsnotitie van de Stuurgroep Technology Assessment van het Ministerie van LNV, Utrecht (2009)

    Google Scholar 

  2. Xu, H., He, P., Gu, W., Wang, G., Shao, L.: Recovery of phosphorus as struvite from sewage sludge ash. J. Environ. Sci. 24(8), 1533–1538 (2012)

    Article  Google Scholar 

  3. Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., Meesschaert, B.: Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit. Rev. Environ. Sci. Technol. 45, 336–384 (2015)

    Article  Google Scholar 

  4. Atienza-Martinez, A., Gea, G., Arauzo, J., Kersten, S., Kootstra, A.: Phosphorus recovery from sewage sludge char ash. Biomass Bioenergy 65, 42–50 (2014)

    Article  Google Scholar 

  5. Cordel, D., White, S.: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10), 2027–2049 (2011)

    Article  Google Scholar 

  6. European Commission: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU (2017)

  7. Fang, L., Li, J., Guo, M., Cheeseman, C., Tsang, D., Donatello, S., Poon, C.: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere 193, 278–287 (2018)

    Article  Google Scholar 

  8. Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J., Vandecasteele, C.: Electricity from poultry manure: a cleaner alternative to direct land application. J. Clean. Prod. 96, 467–475 (2015)

    Article  Google Scholar 

  9. Deydier, E., Guilet, R., Sarda, S., Sharrock, P.: Physical and chemical characterization of crude meat and bone meal combustion residue: “waste or raw material?”. J. Hazard. Mater. 121, 141–148 (2005)

    Article  Google Scholar 

  10. Komiyama, T., Kobayashi, A., Yahagi, M.: The chemical characteristics of ashes from cattle, swine and poultry manure. J. Mater. Cycles Waste Manag. 15(1), 106–110 (2013)

    Article  Google Scholar 

  11. BMC Moerdijk BV: Technical dossier of hydrated poultry litter ash for its inclusion as PK fertiliser in Annex I of Regulation (EC) No 2003/2003 (2015)

  12. Li, W., Yu, H., Rittman, B.: Chemistry: reuse water pollutants. Nature 528, 29–31 (2015)

    Article  Google Scholar 

  13. Dai, J., Tang, W., Zheng, Y., Mackey, H., Chui, H., van Loosdrecht, M., Chen, G.: An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR). Water Res. 66, 75–84 (2014)

    Article  Google Scholar 

  14. Blake, J., Hess, J.: Suitability of poultry litter ash as a feed supplement for broiler chickens. J. Appl. Poult. Res. 23(1), 94–100 (2014)

    Article  Google Scholar 

  15. Ma, J., Betts, N.: Zinc and copper intakes and their major food sources for older adults in the 1994–96 continuing survey of food intakes by individuals (CSFII). J. Nutr. 130(11), 2838–2843 (2000)

    Article  Google Scholar 

  16. Liu, Y., Espinosa, C., Abelilla, J., Casas, G., Lagos, L., Lee, S., Kwon, W., Mathai, J., Navarro, D., Jaworski, N., Stein, H.: Non-antibiotic feed additives in diets for pigs: a review. Anim. Nutr. 4(2), 113–125 (2018)

    Article  Google Scholar 

  17. Yazdankhah, S., Rudi, K., Bernhoft, A.: Zinc and copper in animal feed—development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 25(1), 25862 (2014)

    Google Scholar 

  18. Schorcht, F., Kourti, I., Scalet, B., Roudier, S., Sancho, L.: Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide. Reference Report by the Joint Research Centre of the European Commission (2013)

  19. Verbinnen, B., Billen, P., Van Caneghem, J., Vandecasteele, C.: Recycling of MSWI bottom ash: a review of chemical barriers, engineering applications and treatment technologies. Waste Biomass Valor. 8(5), 1453–1466 (2016)

    Article  Google Scholar 

  20. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. OJ L 332 (2000)

  21. CMA/2/II/A.3: Ontsluitingsmethode voor de bepaling van elementen in bodem, vaste en pasteuze materialen. Belgisch Staatsblad (2016)

  22. European Committee for Standardization: EN 13656:2002 Characterization of waste—microwave assisted digestion with hydrofluoric (HF), nitric (HNO3) and hydrochloric (HCl) acid mixture for subsequent determination of elements (2002)

  23. Vanhoof, C., Beutels, F., Brusten, W., Duyssens, K., Wouters, W., Tirez, K.: Evaluation of different microwave digestion procedures for soil and waste samples. VITO report 2015/SCT/R/0026 (2015)

  24. Vanhoof, C., Beutels, F., Brusten, W., Duyssens, K., Tirez, K.: Evaluation of different digestion procedures for soil and waste samples—part 2. VITO report 2016/SCT/R/502 (2016)

  25. Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers. OJ L 304 (2003)

  26. CMA/2/II/A.12: Uitloging van anorganische componenten uit granulaire materialen en slib met de enkelvoudige schudtest,” Belgisch Staatsblad (2014)

  27. European Committee for Standardization: EN 12457-4:2002 Characterization of waste—leaching—compliance test for leaching of granular waste materials and sludges—part 4: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (2002)

  28. Billen, P., Van Caneghem, J., Visser, H., Costa, J., Van der Aa, L., Vandecasteele, C.: Transient thermal behavior of ash during fluidized bed combustion of poultry litter. Waste Biomass Valor. 8(7), 2535–2543 (2017)

    Article  Google Scholar 

  29. Hong, K., Tarutani, N., Shinya, Y., Kajiuchi, T.: Study on the recovery of phosphorus from waste-activated sludge incinerator ash. J. Environ. Sci. Health 40, 617–631 (2005)

    Article  Google Scholar 

  30. Krüger, O., Adam, C.: Recovery potential of German sewage sludge ash. Waste Manag. 45, 400–406 (2015)

    Article  Google Scholar 

  31. Donatello, S., Cheeseman, C.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 33, 2328–2340 (2013)

    Article  Google Scholar 

  32. Clery, D., Mason, P., Rayner, C., Jones, J.: The effects of an additive on the release of potassium in biomass combustion. Fuel 214, 647–655 (2018)

    Article  Google Scholar 

  33. Ehlert, P., Nelemans, J.: Efficacy of phosphorus of hydrated poultry litter ash; Phosphorus use efficiency of rye grass. Alterra Wageningen UR (University & Research centre), Alterra report, Wageningen, the Netherlands (2015a)

  34. Ehlert, P., Nelemans, J.: Efficacy of potassium of hydrated poultry litter ash; potassium use efficiency of green bean. Alterra Wageningen UR (University & Research centre), Alterra report, Wageningen, the Netherlands (2015b)

  35. Ehlert, P., Nelemans, J.: Efficacy of potassium of hydrated poultry litter ash; Potassium use efficiency of ryegrass. Alterra Wageningen UR (University & Research centre), Alterra report, Wageningen, the Netherlands (2015c)

  36. Delhaye, J.: Valorisation agronomique de phosphore et du potassium contenu dans les cendres d’incineration des fients de volailles. University Libre de Bruxelles, Faculte des sciences section interfacultaire d’Agronomie, Laboratoire de physiology et d’agrotechnologies vegetales (2006)

  37. Bourrié, B.: Estimation de l’efficacité d’un produit fertilisant P K. ITEMA, SADEF-Pôle d’Aspach, Rapport de l’etude C 05-39, France (2006)

  38. International Plant Nutrition Institute: Nutrient source specifics—triple superphosphate. https://www.ipni.net/publication/nss.nsf/0/35039C5F78D8740C852579AF0076567A/$FILE/NSS-14%20Triple%20Superphosphate.pdf. Accessed Mar 2019

  39. Triferto Fertilizers: Triple super phosphate TSP 45%. https://www.triferto.eu/en/commodities/35/triple-super-phosphate-tsp-45. Accessed Mar 2019

  40. International Plant Nutrition Institute: Nutrient source specifics—potassium chloride. http://potassium.ipni.net/ipniweb/region/potassium.nsf/0/58AFA539CC03133085258178006F5140/$FILE/NSS-03%20PotassiumChloride.pdf. Accessed Mar 2019

  41. Navigator Wetgeving Leefmilieu, Natuur en Energie: VLAREMA. https://navigator.emis.vito.be/mijn-navigator?woId=44701 (2012)

  42. Northern Ireland Environment Agency: Quality protocol—poultry litter ash—end of waste criteria for the production and use of treated ash from the incineration of poultry litter, feathers and straw. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/296435/geho0812bwpk-e-e.pdf (2012)

  43. Mortureux, M.: Anses–Dossier n° 2012-0393 AGRIPHOS. https://agriculture.gouv.fr/sites/minagri/files/documents/pdf/AVIS_6110001_AGRIPHOS_cle446a7a.pdf (2013)

  44. Navigator Wetgeving Leefmilieu, Natuur en Energie: VLAREMA https://navigator.emis.vito.be/mijn-navigator?woId=44701 (2018)

  45. Uitvoeringsbesluit Meststoffenwet—Bijlage II—Tabel 1. https://wetten.overheid.nl/BWBR0019031/2019-01-01#BijlageII (2005)

  46. Broos, K., Dierckx, P., Quaghebeur, M., Debaene, L., Vanaken, N.: Afleiding en onderbouw ontwerpnormen voor gebruik grondstoffen als bodemverbeterend middel/meststof in Vlaanderen

  47. Vlaamse Land Maatschappij: Bemesting: normen en richtwaarden 2018. https://www.vlm.be/nl/SiteCollectionDocuments/Publicaties/mestbank/bemestingsnormen_2018.pdf (2018)

  48. Eurostat: Gross nutrient balance (inputs minus outputs) (tonnes of nutrient)—nutrient phosphorus. http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (2019)

  49. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002. OJ L 300, (2009)

  50. Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human…. OJ L 54 (2011)

  51. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed,” OJ L 140 (2002)

  52. Commission Regulation (EC) No 1334/2003 of 25 July 2003 amending the conditions for authorisation of a number of additives in feedingstuffs belonging to the group of trace elements. OJ L 187 (2003)

  53. Schotman, T., Rexwinkel, S.: Voerfabrikanten zetten vijf procent minder pluimveevoer af. https://www.pluimveeweb.nl/artikel/164986-voerfabrikanten-zetten-vijf-procent-minder-pluimveevoer-af/ (2017)

  54. Inorganic Feed Phosphates: Guides—evaluating feed phosphates—feed phosphate quality—inorganic feed phosphate test methods. https://www.feedphosphates.org/index.php/guides. Accessed Mar 2019

  55. Regeling bodemkwaliteit—Bijlage A—Tabel 1. https://wetten.overheid.nl/BWBR0023085/2018-11-30#BijlageA (2007)

  56. Alam, Q., Florea, M., Schollbach, K., Brouwers, H.: A two-stage treatment for municipal solid waste incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants. Waste Manag. 67, 181–192 (2017)

    Article  Google Scholar 

  57. Arickx, S., Van Gerven, T., Knaepkens, T., Hindrix, K., Evens, R., Vandecasteele, C.: Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. Waste Manag. 27, 1422–1427 (2007)

    Article  Google Scholar 

  58. Vandecasteele, C., Wauters, G., Arickx, S., Jaspers, M., Van Gerven, T.: Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case. Waste Manag. 27, 1366–1375 (2007)

    Article  Google Scholar 

  59. Roessler, J., Paris, J., Ferraro, C., Watts, B., Townsend, T.: Use of waste to energy bottom ash as an aggregate in Portland cement concrete: impacts of size fractionation and carbonation. Waste Biomass Valor. 7(6), 1521–1530 (2016)

    Article  Google Scholar 

  60. Bénard, P., Garrault, S., Nonat, A., Cau-Dit-Coumes, C.: Hydration process and rheological properties of cement pastes modified by orthophosphate addition. J. Eur. Ceram. Soc. 25(11), 1877–1883 (2005)

    Article  Google Scholar 

  61. Bolwerk, R., Ebertsch, G., Heinrich, M., Plickert, S., Oerter, M.: German contribution to the review of the reference document on best available techniques in the cement and lime manufacturing industries—part II: cement manufacturing industries (2006)

  62. Oye, B.: Wood ash as raw material for Portland cement. In: ASH 2012, Stockholm, Sweden (2012)

  63. King Lam, C., Barford, J., McKay, G.: Utilization of incineration waste ash residues in Portland cement clinker. Chem. Eng. Trans. 21, 757–762 (2010)

    Google Scholar 

  64. Rajabipour, F., Giannini, E., Dunant, C., Ideker, J., Thomas, M.: Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146 (2015)

    Article  Google Scholar 

  65. Fontes, C., Silva, R., Lima, P.: Characterization and effect of using bottom and fly ashes from co-combustion of cocoa waste as mineral addition in concrete. Waste Biomass Valor 10(1), 223–233 (2019)

    Article  Google Scholar 

  66. Peys, A., Rahier, H., Pontikes, Y.: Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl. Clay Sci. 119, 401–409 (2016)

    Article  Google Scholar 

  67. Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., Chindaprasirt, P.: Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing, Cambridge (2014)

    Google Scholar 

  68. Duxson, P., Fernandez-Jiménez, A., Provis, J., Lukey, G., Palomo, A., van Deventer, J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Article  Google Scholar 

  69. Lancellotti, I., Ponzoni, C., Bignozzi, M., Barbieri, L., Leonelli, C.: Incinerator bottom ash and ladle slag for geopolymers preparation. Waste Biomass Valor. 5(3), 393–401 (2014)

    Article  Google Scholar 

  70. Piasta, W.: Analysis of carbonate and sulphate attack on concrete structures. Eng. Fail. Anal. 79, 606–614 (2017)

    Article  Google Scholar 

  71. Takhim, M.: Process for the production of high purity phosphoric acid”. Patent US 8425872 B2 (2011)

  72. Darwish, M., Ariz, A., Puteh, M., Jusoh, M., Kadir, A.: Waste bones ash as an alternative source of P for struvite precipitation. J. Environ. Manag. 203, 861–866 (2017)

    Article  Google Scholar 

  73. Ottosen, L., Kirkelund, G., Jensen, P.: Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91, 963–969 (2013)

    Article  Google Scholar 

  74. Donatello, S., Tong, D., Cheeseman, C.: Production of technical grade phosphoric acid from incinerator sewage sludge ash. Waste Manag. 30, 1634–1642 (2010)

    Article  Google Scholar 

  75. Cohen, Y.: Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ. Technol. 30(11), 1215–1226 (2009)

    Article  Google Scholar 

  76. Kaikake, K., Sekito, T., Dote, Y.: Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash. Waste Manag. 29, 1084–1088 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by BMC Moerdijk BV (Industrial park M349, Middenweg 36a, 4782 PM Moerdijk, The Netherlands). Furthermore, Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) is acknowledged, as Lorien Luyckx is a SB PhD fellow at FWO (Project Number 1S08418N). Icons in the graphical abstract are created by Ayumi Aya, Setyo Ari Wibowo, Sandra, Mint Shirt, Bakunetsu Kaito, Hernan D. Schlosman, Ben Avery and DPIcons from the Noun Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Luyckx.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Unfortunately, Table 1 was published incorrectly in the original publication of the article. The correct version of Table 1 is provided in the correction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyckx, L., de Leeuw, G.H.J. & Van Caneghem, J. Characterization of Poultry Litter Ash in View of Its Valorization. Waste Biomass Valor 11, 5333–5348 (2020). https://doi.org/10.1007/s12649-019-00750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00750-6

Keywords

Navigation