Skip to main content
Log in

Semi-simultaneous Saccharification and Fermentation of Ethanol Production from Sargassum horneri and Biosorbent Production from Fermentation Residues

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

One of the fundamental goals of bio-ethanol production is to find the alternative of traditional land-relied feedstock. A kind of macroalgae, Sargassum horneri (S. horneri) was chosen as the bio-source for ethanol production in the present investigation. The bioethanol was achieved by acid-pretreated, hydrolysis, and semi-simultaneous saccharification and fermentation (S-SSF) at small pilot scale. Immobilization of Pichia stipites in calcium alginate was adapted in the S-SSF process. Furthermore, effects of pre-hydrolysis time, cellulase loading, fermentation temperature and fermentation time on the concentration, and yield of bio-ethanol were evaluated by using response surface methodology (RSM). A maximum bioethanol concentration (2.89 g/L), and maximum bioethanol yield (0.11 g/g raw material) at cellulase loading (10 IU/g raw material), pre-hydrolysis time (53 min), SSF temperature (32 °C) and SSF time (14 h) were observed. The optimized bioethanol production data series fit the Gompertz model and modified Logistic model with an R2 value of 0.997. The obtained Gompertz and modified Logistic coefficients indicated that S. horneri can serve as an efficient substrate for bioethanol production. The fermentation residues were used for typical dyeing contamination adsorption, the existence of the residual lignin and exposure functional groups made it an effective adsorbent, which followed the pseudo-second-order kinetics. These results are helpful for the scale-up development of lignocellulosic macroalgae based bioethanol production and fermentation residue use.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zabed, H., Sahu, J.N., Suely, A., et al.: Bioethanol production from renewable sources: current perspectives and technological progress. Renew. Sustain. Energy Rev. 71, 475–501 (2017)

    Google Scholar 

  2. Mohapatra, S., Mishra, C., Behera, S.S., et al.: Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew. Sustain. Energy Rev. 78, 1007–1032 (2017)

    Google Scholar 

  3. Ozturk, I.: Biofuel, sustainability, and forest indicators’ nexus in the panel generalized method of moments estimation: evidence from 12 developed and developing countries. Biofuels Bioprod. Biorefin. 10, 150–163 (2016)

    Google Scholar 

  4. Al-Mulali, U., Solarin, S.A., Ozturk, I.: Biofuel energy consumption—economic growth relationship an empirical investigation of Brazil. Biofuels Bioprod. Biorefin. 10, 753–775 (2016)

    Google Scholar 

  5. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012)

    Google Scholar 

  6. Udugama, I.A., Mansouri, S.S., Mitic, A., et al.: Perspectives on resource recovery from bio-based production processes: from concept to implementation. Processes 5, 48–72 (2017)

    Google Scholar 

  7. Nahak, S., Nahak, G., Pradhan, I., et al.: Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci. 1, 74–80 (2011)

    Google Scholar 

  8. Li, K., Liu, S., Liu, X.: An overview of algae bioethanol production. Int. J. Energy Res. 38, 965–977 (2014)

    Google Scholar 

  9. Suganya, T., Varman, M., Masjuki, H.H., et al.: Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew. Sustain. Energy Rev. 55, 909–941 (2016)

    Google Scholar 

  10. John, R.P., Anisha, G.S., Nampoothiri, K.M., et al.: Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193 (2011)

    Google Scholar 

  11. Nguyen, T.H.M., Vu, V.H.: Bioethanol production from marine algae biomass: prospect and troubles. J. Vietnam. Environ. 3, 25–29 (2012)

    Google Scholar 

  12. Milledge, J.J., Smith, B., Dyer, P.W., et al.: Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7, 7194–7222 (2014)

    Google Scholar 

  13. Coelho, M.S., Barbosa, F.G.: The scientometric research on macroalgal biomass as a source of biofuel feedstock. Algal Res. 6, 132–138 (2014)

    Google Scholar 

  14. Shigeyuki, K., Kousaku, M.: Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int. J. Mol. Sci. 17, 145–161 (2016)

    Google Scholar 

  15. Geun, C.C., Geun, K.H., Hyun, S.C.: Transplantation of young fronds of Sargassum horneri for construction of seaweed beds. Korean J. Fish. Aquat. Sci. 36, 469–473 (2003)

    Google Scholar 

  16. Falkenberg, M., Nakano, E., Zambotti-Villela, L., et al.: Bioactive compounds against neglected diseases isolated from macroalgae. J. Appl. Phycol. 31(2), 1–27 (2018)

    Google Scholar 

  17. Singh, A., Nigam, P.S., Murphy, J.D.: Renewable fuels from algae: an answer to debatable land based fuel. Biores. Technol. 102, 10–16 (2011)

    Google Scholar 

  18. Subhadra, B., Edwards, M.: An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38, 4897–4902 (2010)

    Google Scholar 

  19. Milledge, J.J., Smith, B., Dyer, P.W., et al.: Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7, 7194–7222 (2014)

    Google Scholar 

  20. Saqib, A., Tabbssum, M.R., Rashid, U., et al.: Marine macro algae ulva: a potential feed-stock for bioethanol and biogas production. Asian J. Agric. Res. 1, 155–163 (2013)

    Google Scholar 

  21. Ashokkumar, V., Salim, M.R., Salam, Z., et al.: Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica. Energy Convers. Manag. 135, 351–361 (2017)

    Google Scholar 

  22. Komatsu, T., Fukuda, M., Mikami, A., et al.: Possible change in distribution of seaweed, Sargassum horneri, in northeast Asia under A2 scenario of global warming and consequent effect on some fish. Mar. Pollut. Bull. 85, 317–324 (2014)

    Google Scholar 

  23. Yamaguchi, M., Matsumoto, T.: Marine algae Sargassum horneri bioactive factor suppresses proliferation and stimulates apoptotic cell death in human breast cancer MDA-MB-231 cells in vitro. Integr. Mol. Med. 2, 135–138 (2015)

    Google Scholar 

  24. Shao, P., Chen, X., Sun, P., et al.: Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr. Polym. 105, 260–269 (2014)

    Google Scholar 

  25. Sanjeewa, K.K., Fernando, I.P., Kim, E.A., et al.: Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract. 11, 3–10 (2017)

    Google Scholar 

  26. Toro, M.J.J., Dou, X., Ajewole, I., et al.: Preparation and optimization of macroalgae-derived solid acid catalysts. Waste Biomass Valoriz. 9, 1–12 (2017)

    Google Scholar 

  27. Xu, Q., Qian, Q., Quek, A., et al.: Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. Acs Sustain. Chem. Eng. 1, 1092–1101 (2013)

    Google Scholar 

  28. Zeng, G., Lou, S., Ying, H., et al.: Preparation of microporous carbon from Sargassum horneri by hydrothermal carbonization and KOH activation for CO2 capture. J. Chem. (2018). https://doi.org/10.1155/2018/4319149

    Article  Google Scholar 

  29. Dawczynski, C., Schubert, R., Jahreis, G.: Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 103, 891–899 (2007)

    Google Scholar 

  30. Santin, P., Vaithanomsat, P., Praiboon, J.: Ethanol production from Sargassum sp. by a simultaneous saccharification and fermentation process. In: The, International Symposium on Microbial Technology for Food and Energy Security (2013)

  31. Bae, Y.J., Ryu, C., Jeon, J.K., et al.: The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol. 102, 3512–3520 (2011)

    Google Scholar 

  32. Demirbas, A.: Biorefineries: current activities and future developments. Energy Convers. Manag. 50, 2782–2801 (2009)

    Google Scholar 

  33. Komatsu, T., Fukuda, M., Mikami, A., et al.: Possible change in distribution of seaweed, Sargassum horneri, in northeast Asia under A2 scenario of global warming and consequent effect on some fish. Mar. Pollut. Bull. 85, 317–324 (2014)

    Google Scholar 

  34. Komatsu, T., Kawai, H., Sakamoto, W.: Influence of Sargassum forests on marine environment. Bull. Coast. Oceanogr. 27, 115–126 (1990)

    Google Scholar 

  35. Buschmann, A.H., Camus, C., Infante, J., et al.: Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52, 391–406 (2017)

    Google Scholar 

  36. Smetacek, V., Zingone, A.: Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013)

    Google Scholar 

  37. Marks, L.M., Salinas-Ruiz, P., Reed, D.C., et al.: Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, in the eastern Pacific. BioInvasions Rec. 4(2015), 243–248 (2015)

    Google Scholar 

  38. Marks, Lindsay, Reed, Daniel, Obaza, Adam: Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017)

    Google Scholar 

  39. Xing, Q.G., Guo, R.H., Wu, L.L., et al.: High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea. IEEE Geosci. Remote Sens. Lett. 14, 1815–1819 (2017)

    Google Scholar 

  40. Valiela, I., McClelland, J., Hauxwell, J., et al.: Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42, 1105–1118 (1997)

    Google Scholar 

  41. Fernand, F., Israel, A., Skjermo, J., et al.: Offshore macroalgae biomass for bioenergy production environmental aspects, technological achievements and challenges. Renew. Sustain. Energy Rev. 75, 35–45 (2016)

    Google Scholar 

  42. Shen, J.C., Agblevor, F.A.: Modeling semi-simultaneous saccharification and fermentation of ethanol production from cellulose. Biomass Bioenergy 34, 1098–1107 (2010)

    Google Scholar 

  43. Lee, J.Y., Li, P., Lee, J., et al.: Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour. Technol. 127, 119–125 (2013)

    Google Scholar 

  44. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2, 26–40 (2008)

    Google Scholar 

  45. Meinita, M.D.N., Kang, J.Y., Jeong, G.T., et al.: Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24, 857–862 (2012)

    Google Scholar 

  46. Park, J.H., Hong, J.Y., Jang, H.C., et al.: Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108, 83–88 (2012)

    Google Scholar 

  47. Campo, I.D., Alegría, I., Zazpe, M., et al.: Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crop Prod. 24, 214–221 (2006)

    Google Scholar 

  48. Palmqvist, E., Hahn-Hagerdal, B.: Fermentation oflignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74, 25–33 (2000)

    Google Scholar 

  49. Dubey, A.K., Gupta, P.K., Garg, N., et al.: Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipitis. Carbohydr. Polym. 88, 825–829 (2012)

    Google Scholar 

  50. Lee, K.H., Choi, I.S., Kim, Y.G., et al.: Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour. Technol. 102, 8191–8198 (2011)

    Google Scholar 

  51. Elliston, A., Collins, S.R., Wilson, D.R., et al.: High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour. Technol. 134, 117–126 (2013)

    Google Scholar 

  52. Sannigrahi, P., Ragauskas, A.J.: Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks. J. Biobased Mater. Bioenergy 5, 514–519 (2011)

    Google Scholar 

  53. Sar, P., Kazy, S.K., Asthana, R.K., et al.: Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int. Biodeterior. Biodegrad. 44, 101–110 (1999)

    Google Scholar 

  54. Bilal, M., Rasheed, T., Eduardo Sosa-Hernández, J., et al.: Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar. Drugs 16, 65–80 (2018)

    Google Scholar 

  55. Borines, M.G., Leon, R.L.D., Cuello, J.L.: Bioethanol production from the macroalgae Sargassum, spp. Bioresour. Technol. 138, 22–29 (2013)

    Google Scholar 

  56. Lee, S.M., Kim, J.H., Cho, H.Y., et al.: Production of bioethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20, 517–521 (2009)

    Google Scholar 

  57. Yoza, B.A., Masutani, E.M., Arashiro, S.M.T., et al.: The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environ. Technol. 34, 1859–1867 (2013)

    Google Scholar 

  58. Jiang, Y.Y., Bao, H.J., Zeng, G.N.: Optimization of Sargassum horneri pretreatment process using dilute acid for bioethanol. Environ. Sci. Technol. 27, 801–808 (2014)

    Google Scholar 

  59. Wu, F.C., Wu, J.Y., Liao, Y.J., et al.: Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour. Technol. 156, 123–131 (2014)

    Google Scholar 

  60. Yeon, J.H., Lee, S.E., Choi, W.Y., et al.: Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21, 323–331 (2011)

    Google Scholar 

  61. Lee, S.E., Lee, J.E., Shin, G.Y., et al.: Development of a practical and cost-effective medium for bioethanol production from the seaweed hydrolysate in surface-aerated fermenter by repeated-batch operation. J. Microbiol. Biotechnol. 22, 107–113 (2012)

    Google Scholar 

  62. Wirawan, F., Cheng, C.L., Kao, W.C., et al.: Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Appl. Energy 100, 19–26 (2012)

    Google Scholar 

  63. Watanabe, I., Miyata, N., Ando, A., Shiroma, R., Tokuyasu, K., Nakamura, T. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae Cell[J]. Bioresour. Technol. 123, 695–698 (2012)

    Google Scholar 

  64. Omar, H., Adel, E.G., Khairia, A.A.: Bioremoval of toxic dye by using different marine macroalgae. Turk. J. Bot. 42, 15–27 (2018)

    Google Scholar 

  65. Liang, J.F., Xia, J.R., Long, J.Y.: Biosorption of methylene blue by nonliving biomass of the brown macroalga Sargassum hemiphyllum. Water Sci. Technol. 76, 1574–1583 (2017)

    Google Scholar 

  66. Esmaeli, A., Jokar, M., Kousha, M., et al.: Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum: Ochrophyta). Chem. Eng. J. 217, 329–336 (2013)

    Google Scholar 

  67. Idayu, N., Salihi, I.U., Zainoddin, J.: The use of macroalgae (Gracilaria changii) as bio-adsorbent for copper (II) removal. In: IOP Conference Series: Materials Science and Engineering, vol. 201, p. 012031. IOP Publishing (2017)

  68. Isam, M., Baloo, L., Sapari, N., et al.: Removal of lead using activated carbon derived from red algae (Gracilaria Changii). In MATEC Web of Conferences. EDP Sciences, vol. 203, p. 03006. (2018)

  69. Rahman, M., Sathasivam, K.V.: Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. Biomed. Res. Int. 7, 126298 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Research Fund for the National Natural Science Foundation of China (Grant Nos. 51728902, 21606198), and the Zhejiang Province Science and Technology Hall (Grant No. LGF18D060002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganning Zeng or Kun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., You, H., Wang, K. et al. Semi-simultaneous Saccharification and Fermentation of Ethanol Production from Sargassum horneri and Biosorbent Production from Fermentation Residues. Waste Biomass Valor 11, 4743–4755 (2020). https://doi.org/10.1007/s12649-019-00748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00748-0

Keywords

Navigation