Skip to main content
Log in

Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper describes the present applied research focused on pyrolysis oil as one of the three products of sewage sludge (SS) thermal treatment processing—microwave assisted pyrolysis (MAP). Specifically, the full-scale MAP unit with 3 kW magnetron and with the frequency of 2.45 GHz at low pressure conditions is in operation at AdMaS Research Centre, Brno University of Technology (AdMaS BUT). The aim of this paper is to present a chemical characterization of obtained pyrolysis oil together with the suitable analytical determination methods. Detailed characterization of pyrolysis oil from SS was realized by precipitation in n-pentane, fractionation of pentane-soluble part by column chromatography on activated silica by stepwise elution and analysis of obtained fractions by comprehensive orthogonal two-dimensional gas chromatography with time-of-flight mass spectrometric detection. Substances from several groups have been identified at the pyrolysis oil from SS sample: alkanes (110 compounds), alkenes and alkynes (184 compounds), cycloalkanes (104 compounds), aromatic and polyaromatic hydrocarbons (646 compounds), further lower numbers of alcohols, aldehydes, esters, carboxylic acids and heterocycles. The paper also presents a comparison of the above mentioned used two chromatographic methods and imply a basic ecotoxicological test—small algal screening.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Comission, A roadmap for moving to a competitive low carbon economy in 2050 Brussels. (2011)

  2. Fonts, I., Gea, G., Azuara, M., Abrego, J., Arauzo, J.: Sewage sludge pyrolysis for liquid production: a review. Renew. Sustain. Energy Rev. 16, 2781–2805 (2012)

    Google Scholar 

  3. Inguanzo, M., Domínguez, A., Menéndez, J.A., Blanco, C.G., Pis, J.J.: On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrolysis 63, 209–222 (2002)

    Google Scholar 

  4. Bridle, T.R., Pritchard, D.: Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 50, 169–175 (2004)

    Google Scholar 

  5. Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D.: Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res. 43, 2569–2594 (2009)

    Google Scholar 

  6. Domínguez, A., Menéndez, J.A., Inguanzo, M., Pis, J.J.: Production of bio-fuel by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour. Technol. 97, 1185–1193 (2006)

    Google Scholar 

  7. Park, E.S., Kang, B.S., Kim, J.S.: Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy Fuels 22, 1335–1340 (2008)

    Google Scholar 

  8. Fonts, I., Azuara, M., Gea, G., Murillo, M.B.: Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis 85, 184–191 (2009)

    Google Scholar 

  9. Zhao, B., Xu, X., Xu, S., Chen, X., Li, H., Zeng, F.: Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Biores. Technol. 243, 375–383 (2017)

    Google Scholar 

  10. Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M.H., Wang, M., Shan, S., Christie, P.: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazardous Mater. 320, 417–426 (2016)

    Google Scholar 

  11. Liu, T., Liu, Z., Zhengc, O., Lang, Q., Xia, Y., Peng, N., Gai, Ch.: Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Biores. Technol. 247, 282–290 (2018)

    Google Scholar 

  12. Liu, X., Wang, Y., Gui, C., Li, P., Zhang, J., Zhong, H., Wei, Y.: Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-inducted pyrolysis. RSC Adv. 6, 101960–101967 (2016)

    Google Scholar 

  13. Huang, Y.-F., Pei-Te, C.A., Shang-Lien, L.: A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 26(3), 103–109 (2016)

    Google Scholar 

  14. Callegari, A., Hlavinek, P., Capodaglio, A.G.: Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of waste urban sludge. Revista Ambiente e Agua ISSN 1980-993X, Revista Ambiente & Água, Brazil, (2018)

  15. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)

    Google Scholar 

  16. Chiaramonti, D., Oasmaa, A., Solantausta, Y.: Power generation using fast pyrolysis liquids from biomass. Renew. Sustain. Energy Rev. 11, 1056–1086 (2007)

    Google Scholar 

  17. Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2), 590–598 (2004). https://doi.org/10.1021/ef034067u

    Article  Google Scholar 

  18. Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D.: Pyrolysis behaviour and kinetics of biomass derived materials. J. Appl. Pyrolysis 62, 331–349 (2002)

    Google Scholar 

  19. Chowdhury, A., Nanjappa, A., Mohammad, R., Mohammad, J.: Biofuels production through biomass pyrolysis. A Technological Review. Energies 5(12), 4952–5001 (2012)

    Google Scholar 

  20. Ochodek, T., Koloničný, J., Michal, B.: Technologie pro přípravu a energetické využití biomasy. VŠB-TU Ostrava, Ostrava (2007)

    Google Scholar 

  21. Studie zařízení na pyrolytický rozklad odpadů: část 1. Ostrava: Ministerstvo životního prostředí ČR. (2010)

  22. Jílková, L., Karel, C., Radek, Č.: Technologie pro pyrolýzu paliv a odpadů. PALIVA 4(3), 74–80 (2012)

    Google Scholar 

  23. Atienza-Martínez, M., Fonts, I., Ábrego, J., Ceamanos, J., Gea, G.: Sewage sludge torrefaction in a fluidized bed reactor. Chem. Eng. J. 222, 534–545 (2013)

    Google Scholar 

  24. Demirbas, A.: Recent advances in biomass conversion technologies. Energy Educ. Sci. Technol. 6, 77–83 (2000)

    Google Scholar 

  25. Cornelissen, T., Yperman, Y., Reggers, G., Schreurs, S., Carleer, R.: Flash co-pyrolysis of biomass with polylactic acid. Part 1: influence on bio-oil yield and heating value. Fuel 87, 1031–1041 (2008)

    Google Scholar 

  26. Demirbas, A., Arin, G.: An overview of biomass pyrolysis. Energy Source Part A 24, 471–482 (2002)

    Google Scholar 

  27. Brammer, J.G., Lauer, M., Bridgwater, A.V.: Opportunities for biomass-derived ‘‘bio-oil” in European heat and power markets. Energy Policy 34, 2871–2880 (2006)

    Google Scholar 

  28. Venderbosch, R.H., Prins, W.: Review: fast pyrolysis technology development. Biofuel 4, 178–208 (2010)

    Google Scholar 

  29. Bridgwater, A.V.: Fast pyrolysis of biomass: a handbook. CRL Press, Newbury (2005)

    Google Scholar 

  30. Demirbas, A.H.: Yields and heating values of liquids and chars from spruce trunkbark pyrolysis. Energy Sources Part A 27, 1367–1373 (2005). https://doi.org/10.1080/009083190523208

    Article  Google Scholar 

  31. Tippayawong, N., Kinorn, J., Thavornun, S.: Yields and gaseous composition from slow pyrolysis of refuse-derived fuels. Energy Source Part A 30, 1572–1578 (2008)

    Google Scholar 

  32. Aguado, R., Olazar, M., Gaisan, B., Prieto, R., Bilbao, J.: Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor. Ind. Eng. Chem. Res. 41, 4559–4566 (2002)

    Google Scholar 

  33. Bridgwater, A.V.: Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91(2), 87–102 (2003)

    Google Scholar 

  34. European Commission, EU Emissions Trading System (EU ETS), https://ec.europa.eu/clima/policies/ets_en, Accessed 27th August 2018 (2018)

  35. Žvaková, Veronika. Detailed characterization of pyrolysis oil by separation techniques and mass Spectrometry. Master´s Thesis. Brno University of Technology, Faculty of Chemistry. Brno. (2017)

  36. Ahmed, M., et al.: Biomass as a renewable source of chemicals for industrial applications. Int. J. Eng. Sci. Technol. 4, 721–730 (2012)

    Google Scholar 

  37. Bridgwater, A.V.: The production of biofuels and renewable chemicals by fast pyrolysis of biomass. Int. J. Glob. Energy Issues 27(2), 160–203 (2007)

    Google Scholar 

  38. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy (2011). https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  39. Patel, R.N., Bandyopadhyay, S., Ganesh, A.: Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy 36, 1535–1542 (2011)

    Google Scholar 

  40. Bu, Q., Lei, H., Ren, S., Wang, L., Zhang, Q., Tang, J., Ruan, R.: Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 108, 274–279 (2012)

    Google Scholar 

  41. Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., Ruan, R.: Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 102, 4890–4896 (2011)

    Google Scholar 

  42. Wang, X., Morrison, W., Du, Z., Wan, Y., Lin, X., Chen, P., Ruan, R.: Biomass temperature profile development and its implications under the microwave assisted pyrolysis condition. Appl. Energy 99, 386–392 (2012)

    Google Scholar 

  43. Sobhy, A., Chaouki, J.: Microwave-assisted biorefinery. Chem. Eng. Trans. 19, 25–30 (2010)

    Google Scholar 

  44. Menéndez, J.A., Inguanzo, M., Pis, J.J.: Microwave-induced pyrolysis of sewage sludge. Water Res. 36(13), 3261–3264 (2002). https://doi.org/10.1016/s0043-1354(02)00017-9

    Article  Google Scholar 

  45. Huang, Y.-F., Pei-Te, C., Wen-Hui, K., Shang-Lien, L.: Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy 100, 137–144 (2016)

    Google Scholar 

  46. Gooty, A.T., et al.: Fractional condensation of bio-oil vapors. Sep. Purif. Technol. 124, 81–88 (2013)

    Google Scholar 

  47. Hlavínek, P: Microwave pyrolysis of sewage sludge. Vodovod.info - vodárenský informační portál [online]. 112015. ISSN 1804-7157. (2015)

  48. Jayasinghe, P., Hawboldt, K.: A review of bio-oils from waste biomass: focus on fish processing waste. Renew. Sustain. Energy Rev 12(16), 798–821 (2012)

    Google Scholar 

  49. Conte, P., Schmidt, H.-P., Cimò, G.: Research and application of biochar in Europe. In: Guo, M., He, Z., Uchimiya, M. (eds.) Agricultural and Environmental Applications of Biochar: Advances and Barriers. SSSA, Madison (2015)

    Google Scholar 

  50. Raček J., Capodaglio A., Ševčík J., Chorazy T., Hlavínek P.: Microwave pyrolysis treatment of sewage sludge: Performed at laboratory and full-scale conditions. In 17th International multidisciplinary scientific geoconference SGEM 2017. International multidisciplinary geoconference SGEM. Bulgaria: SGEM. pp. 107–114. ISBN: 978-619-7408-28-7. ISSN: 1314-2704. (2017)

  51. Garcia-Perez, M.A., Chaala, H., Pakdel, D., Roy, K.C.: Characterization of bio-oils in chemical families. Biomass Bioenergy 31(4), 222–242 (2007)

    Google Scholar 

  52. Sipilä, K., Kuoppala, E., Fagernäs, L., Oasmaa, A.: Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14(2), 103–113 (1998)

    Google Scholar 

  53. Campisi, T., Samorì, C., Torri, C., Barbera, G., Foschini, A., Kiwan, A., Galletti, P., Tagliavini, E., Pasteris, A.: Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses. Ecotoxicol. Environ. Safety 132, 87–93 (2016)

    Google Scholar 

Download references

Acknowledgements

This paper has been worked out under the project No. LO1408 “AdMaS UP—Advanced Materials, Structures and Technologies”, supported by Ministry of Education, Youth and Sports under the, National Sustainability Programme I”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Chorazy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chorazy, T., Čáslavský, J., Žvaková, V. et al. Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment. Waste Biomass Valor 11, 4491–4505 (2020). https://doi.org/10.1007/s12649-019-00735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00735-5

Keywords

Navigation