Skip to main content

Advertisement

Log in

Methane Augmentation of Anaerobic Digestion of Food Waste in the Presence of Fe3O4 and Carbamide Capped Fe3O4 Nanoparticles

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) of organic matter (OM) has always been questioned, because of its time taking bio-disintegration process. In the last few years, nanoparticles (NPs) have been reported as the biodegradation accelerators due to their unique physicochemical properties. For this, iron oxide (Fe3O4) and carbamide (generally known as Urea) capped Fe3O4 (U–Fe3O4) NPs were synthesized by modifying the chemical co-precipitation method and then characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive x-ray (EDX) techniques. In this study, the effect of Fe3O4 and U–Fe3O4 nanoparticles on methane generation was experimentally determined in batch mode AD under mesophilic conditions (38 ± 1 °C). 500 mL culture bottles with 300 mL working volume were used as bioreactors for 50 days. The highest concentration of both types of NPs was 75 mg/L; the other two were 25 and 50 mg/L. The addition of NPs enhanced the CH4 generation compared to the control (without NPs). Hence, the maximum methane generation was achieved at 75 mg/L concentration in both cases 1.45 and 1.52 times more enhancement more than the blank, respectively. Additionally, the experimental methane generation on a cumulative basis was kinetically described by modified Gompertz model (MGM). Thereafter, the model accuracy was further determined by statistical analysis by estimating the coefficient of determination (R2), which was in the range of 0.976–0.999 and the root mean square error (RMSE). Analysis of variance (ANOVA) test was also conducted to examine the significance of methane generation within the treatments applied ɑ = 0.05.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braguglia, C.M., Gallipoli, A., Gianico, A., Pagliaccia, P.: Anaerobic bioconversion of food waste into energy: a critical review. Bioresour. Technol. 248, 37–56 (2018). https://doi.org/10.1016/j.biortech.2017.06.145

    Article  Google Scholar 

  2. Ali, A., Mahar, R.B., Sheerazi, S.T.H.: Renewable electricity generation from food waste through anaerobic digestion in Pakistan: a mini-review. Earth Syst. Environ. (2018). https://doi.org/10.1007/s41748-018-0084-4

    Article  Google Scholar 

  3. Kibler, K.M., Reinhart, D., Hawkins, C., Motlagh, A.M., Wright, J.: Food waste and the food-energy-water nexus: a review of food waste management alternatives. Waste Manag. 74, 52–62 (2018). https://doi.org/10.1016/j.wasman.2018.01.014

    Article  Google Scholar 

  4. Sun, S.K., Lu, Y.J., Gao, H., Jiang, T.T., Du, X.Y., Shen, T.X., Wu, P.T., Wang, Y.B.: Impacts of food wastage on water resources and environment in China. J. Clean. Prod. 185, 732–739 (2018). https://doi.org/10.1016/j.jclepro.2018.03.029

    Article  Google Scholar 

  5. Xin, X., Ma, Y., Liu, Y.: Electric energy production from food waste: microbial fuel cells versus anaerobic digestion. Bioresour. Technol. 255, 281–287 (2018). https://doi.org/10.1016/j.biortech.2018.01.099

    Article  Google Scholar 

  6. Xiao, B., Qin, Y., Zhang, W., Wu, J., Qiang, H., Liu, J., Li, Y.Y.: Temperature-phased anaerobic digestion of food waste: a comparison with single-stage digestions based on performance and energy balance. Bioresour. Technol. 249, 826–834 (2018). https://doi.org/10.1016/j.biortech.2017.10.084

    Article  Google Scholar 

  7. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  8. Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y.: Bioconversion of food waste to energy: a review. Fuel 134, 389–399 (2014). https://doi.org/10.1016/j.fuel.2014.05.074

    Article  Google Scholar 

  9. Nguyen, H.H., Heaven, S., Banks, C.: Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam. Int. J. Energy Environ. Eng. 5, 365–374 (2014). https://doi.org/10.1007/s40095-014-0133-1

    Article  Google Scholar 

  10. Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J.: Anaerobic digestion of food waste—effect of recirculation and temperature on performance and microbiology. Water Res. 96, 246–254 (2016). https://doi.org/10.1016/j.watres.2016.03.058

    Article  Google Scholar 

  11. Ali, A., Mahar, R.B., Abdelsalam, E.M., Sherazi, S.T.H.: Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 nanoparticles. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0375-x

    Article  Google Scholar 

  12. Yu, Z., Leng, X., Zhao, S., Ji, J., Zhou, T., Khan, A., Kakde, A., Liu, P., Li, X.: A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour. Technol. 255, 340–348 (2018). https://doi.org/10.1016/j.biortech.2018.02.003

    Article  Google Scholar 

  13. Ali, A., Rundong, L., Shah, F., Mahar, R., WajidIjaz, M., Muqueet, M.: Predictive modeling of biogas production from anaerobic digestion of mixed kitchen waste at mesophilic temperature. Int. Waste Resour. (2016). https://doi.org/10.4172/2252-5211.1000230

    Article  Google Scholar 

  14. Ali, A., Mahar, R.B., Soomro, R.A., Sherazi, S.T.H.: Fe 3 O 4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources Part A 39, 1815–1822 (2017). https://doi.org/10.1007/s12649-018-0375-x

    Article  Google Scholar 

  15. Guo, Z., Liu, W., Yang, C., Gao, L., Thangavel, S., Wang, L., He, Z., Cai, W., Wang, A.: Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Res. 125, 170–179 (2017)

    Article  Google Scholar 

  16. Vanwonterghem, I., Jensen, P.D., Ho, D.P., Batstone, D.J., Tyson, G.W.: ScienceDirect linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr. Opin. Biotechnol. 27, 55–64 (2013). https://doi.org/10.1016/j.copbio.2013.11.004

    Article  Google Scholar 

  17. Park, J., Lee, B., Tian, D., Jun, H.: Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour. Technol. 247, 226–233 (2018)

    Article  Google Scholar 

  18. Abdelsalam, E., Samer, M., Attia, Y.A., Abdel-hadi, M.A., Hassan, H.E., Badr, Y.: Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers. Manag. (2016). https://doi.org/10.1016/j.enconman.2016.05.051

    Article  Google Scholar 

  19. Li, Y., Zhang, R., He, Y., Zhang, C., Liu, X., Chen, C., Liu, G.: Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresour. Technol. 156, 342–347 (2014). https://doi.org/10.1016/j.biortech.2014.01.054

    Article  Google Scholar 

  20. Luna-delRisco, M., Orupõld, K., Dubourguier, H.C.: Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J. Hazard. Mater. 189, 603–608 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.085

    Article  Google Scholar 

  21. Qiang, H., Lang, D.L., Li, Y.Y.: High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements. Bioresour. Technol. 103, 21–27 (2012). https://doi.org/10.1016/j.biortech.2011.09.036

    Article  Google Scholar 

  22. Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D.: Effect of trace element supplementation on the mesophilic anaerobic digestion of food waste in batch trials: the influence of inoculum origin. Biochem. Eng. J. 70, 71–77 (2013). https://doi.org/10.1016/j.bej.2012.10.004

    Article  Google Scholar 

  23. Vintiloiu, A., Lemmer, A., Oechsner, H., Jungbluth, T.: Mineral substances and macronutrients in the anaerobic conversion of biomass: an impact evaluation. Eng. Life Sci. 12, 287–294 (2012). https://doi.org/10.1002/elsc.201100159

    Article  Google Scholar 

  24. Santosh, Yadvika, Sreekrishnan, T.R., Kohli, S., Rana, V.: Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour. Technol. 95, 1–10 (2004). https://doi.org/10.1016/j.biortech.2004.02.010

    Article  Google Scholar 

  25. Abdelsalam, E., Samer, M., Attia, Y.A., Abdel-hadi, M.A., Hassan, H.E., Badr, Y.: In fluence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy. (2016). https://doi.org/10.1016/j.energy.2016.11.137

    Article  Google Scholar 

  26. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  27. Forster, S.P., Olveira, S., Seeger, S.: Nanotechnology in the market: promises and realities. Int. J. Nanotechnol. 8, 592–613 (2011)

    Article  Google Scholar 

  28. Tratnyek, P.G., Johnson, R.L.: Nanotechnologies for environmental cleanup. Nano Today. 1, 44–48 (2006). https://doi.org/10.1016/S1748-0132(06)70048-2

    Article  Google Scholar 

  29. Yang, Y., Guo, J., Hu, Z.: Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res. 47, 6790–6800 (2013). https://doi.org/10.1016/j.watres.2013.09.012

    Article  Google Scholar 

  30. Honetschlägerová, L., Škarohlíd, R., Martinec, M., Šír, M., Luciano, V.: Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene. Int. Biodeterior. Biodegrad. 127, 241–246 (2018)

    Article  Google Scholar 

  31. Puyol, D., Flores-alsina, X., Segura, Y., Molina, R., Padrino, B., Fierro, J.L.G., Gernaey, K.V., Melero, J.A., Martinez, F.: Exploring the e ff ects of ZVI addition on resource recovery in the anaerobic digestion process graphical abstract. Chem. Eng. J. 335, 703–711 (2018). https://doi.org/10.1016/j.cej.2017.11.029

    Article  Google Scholar 

  32. Antwi, P., Li, J., Boadi, P.O., Meng, J., Shi, E., Chi, X., Deng, K., Ayivi, F.: Dosing effect of zero valent iron (ZVI) on biomethanation and microbial community distribution as revealed by 16S rRNA high-throughput sequencing. Int. Biodeterior. Biodegrad. 123, 191–199 (2017)

    Article  Google Scholar 

  33. Zhang, J., Sui, Q., Zhong, H., Meng, X., Wang, Z., Wang, Y., Wei, Y.: Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 258, 135–141 (2018)

    Article  Google Scholar 

  34. Park, J.H., Kang, H.J., Park, K.H., Park, H.D.: Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresour. Technol. 254, 300–311 (2018). https://doi.org/10.1016/j.biortech.2018.01.095

    Article  Google Scholar 

  35. Zhang, J., Lu, Y.: Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Front. Microbiol. 7, 1316 (2016)

    Google Scholar 

  36. Wang, T., Zhang, D., Dai, L., Dong, B., Dai, X.: Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environ. Sci. Technol. 52, 7160–7169 (2018). https://doi.org/10.1021/acs.est.8b00891

    Article  Google Scholar 

  37. Ali, A., Mahar, R.B., Soomro, R.A., Sherazi, S.T.H.: Fe 3 O 4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources Part A 39, 1815–1822 (2017). https://doi.org/10.1080/15567036.2017.1384866

    Article  Google Scholar 

  38. Ye, Q., Zhang, Z., Huang, Y., Fang, T., Cui, Q., He, C., Wang, H.: Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation. Int. Biodeterior. Biodegrad. 129, 109–116 (2018)

    Article  Google Scholar 

  39. Suanon, F., Sun, Q., Mama, D., Li, J., Dimon, B., Yu, C.-P.: Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Res. 88, 897–903 (2016)

    Article  Google Scholar 

  40. Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., Font, X., Arbiol, J., Glatzel, P., Kvashnina, K.: Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10, 2801–2808 (2014)

    Article  Google Scholar 

  41. Bai, H., Liu, Z., Sun, D.D.: Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol. 81, 392–399 (2011). https://doi.org/10.1016/j.seppur.2011.08.007

    Article  Google Scholar 

  42. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M.: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour. Technol. 143, 525–530 (2013). https://doi.org/10.1016/j.biortech.2013.06.025

    Article  Google Scholar 

  43. Chen, X., Romano, R.T., Zhang, R.: Anaerobic digestion of food wastes for biogas production. Int. J. Agric. Biol. Eng. 3, 61–72 (2010). https://doi.org/10.3965/j.issn.1934-6344.2010.04.061-072

    Article  Google Scholar 

  44. APHA: Standard methods for the examination of water and wastewater. APHA, Washington (1995)

    Google Scholar 

  45. Hariani, P.L., Faizal, M., Setiabudidaya, D.: Synthesis and properties of Fe 3 O 4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev. (2013). https://doi.org/10.7763/ijesd.2013.v4.366

    Article  Google Scholar 

  46. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  47. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.L.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014). https://doi.org/10.1016/j.apenergy.2014.02.035

    Article  Google Scholar 

  48. Tsapekos, P., Kougias, P.G., Kuthiala, S., Angelidaki, I.: Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 159, 1–6 (2018). https://doi.org/10.1016/j.enconman.2018.01.002

    Article  Google Scholar 

  49. Algapani, D.E., Wang, J., Qiao, W., Su, M., Goglio, A., Wandera, S.M., Jiang, M., Pan, X., Adani, F., Dong, R.: Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Bioresour. Technol. 244, 996–1005 (2017)

    Article  Google Scholar 

  50. Kafle, G.K., Kim, S.H., Sung, K.I.: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 127, 326–336 (2013). https://doi.org/10.1016/j.biortech.2012.09.032

    Article  Google Scholar 

  51. Membere, E., Sallis, P.: Effect of temperature on kinetics of biogas production from macroalgae. Bioresour. Technol. 263, 410–417 (2018)

    Article  Google Scholar 

  52. Yong, Z., Dong, Y., Zhang, X., Tan, T.: Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy. 78, 527–530 (2015). https://doi.org/10.1016/j.renene.2015.01.033

    Article  Google Scholar 

  53. Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T.: Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 118, 210–218 (2012). https://doi.org/10.1016/j.biortech.2012.05.045

    Article  Google Scholar 

  54. Park, J.Y., Aliaga, C., Renzas, J.R., Lee, H., Somorjai, G.A.: The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal. Lett. 129, 1–6 (2009). https://doi.org/10.1007/s10562-009-9871-8

    Article  Google Scholar 

  55. Banerjee, A., Qi, J., Gogoi, R., Wong, J., Mitragotri, S.: Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176–185 (2016). https://doi.org/10.1016/j.jconrel.2016.07.051

    Article  Google Scholar 

  56. Yu, M., Zhao, M., Huang, Z., Xi, K., Shi, W., Ruan, W.: A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion. Waste Manag. 72, 218–226 (2017). https://doi.org/10.1016/j.wasman.2017.10.038

    Article  Google Scholar 

  57. Feng, X.M., Karlsson, A., Svensson, B.H., Bertilsson, S.: Impact of trace element addition on biogas production from food industrial waste–linking process to microbial communities. FEMS Microbiol. Ecol. 74, 226–240 (2010)

    Article  Google Scholar 

  58. Ni, S.Q., Ni, J., Yang, N., Wang, J.: Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour. Technol. 143, 555–561 (2013). https://doi.org/10.1016/j.biortech.2013.06.041

    Article  Google Scholar 

  59. Wang, K., Yin, J., Shen, D., Li, N.: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour. Technol. 161, 395–401 (2014). https://doi.org/10.1016/j.biortech.2014.03.088

    Article  Google Scholar 

  60. De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R.: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–1361 (2013). https://doi.org/10.1016/j.wasman.2013.02.019

    Article  Google Scholar 

  61. Phan, C.M., Nguyen, H.M.: Role of capping agent in wet synthesis of nanoparticles. J. Phys. Chem. A 121, 3213–3219 (2017)

    Article  Google Scholar 

  62. Paramaguru, G., Kannan, M., Lawrence, P., Thamilselvan, D.: Effect of pH on biogas production through anaerobic digestion of food waste. J. Adv. Eng. Res. 4, 59–62 (2017). https://doi.org/10.5004/dwt.2017.20167

    Article  Google Scholar 

  63. Sivakumar, P., Bhagiyalakshmi, M., Anbarasu, K.: Anaerobic treatment of spoiled milk from milk processing industry for energy recovery—a laboratory to pilot scale study. Fuel 96, 482–486 (2012). https://doi.org/10.1016/j.fuel.2012.01.046

    Article  Google Scholar 

  64. Wu, X., Yao, W., Zhu, J.: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int. J. Hydrog. Energy 35, 6592–6599 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.097

    Article  Google Scholar 

  65. Deepanraj, B., Sivasubramanian, V., Jayaraj, S.: Experimental and kinetic study on anaerobic digestion of food waste: the effect of total solids and pH. J. Renew. Sustain. Energy. 7, 63104 (2015)

    Article  Google Scholar 

  66. Zhao, C., Mu, H., Zhao, Y., Wang, L., Zuo, B.: Microbial characteristics analysis and kinetic studies on substrate composition to methane after microbial and nutritional regulation of fruit and vegetable wastes anaerobic digestion. Bioresour. Technol. 249, 315–321 (2018)

    Article  Google Scholar 

  67. Wu, C., Yu, M., Huang, Q., Ma, H., Gao, M., Wang, Q., Sakai, K.: Stimulation of methane yield from food waste by aerobic pre-treatment. Bioresour. Technol. 261, 279–287 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was sponsored financially by the US-Pakistan Center for Advanced Studies in Water, Mehran, UET, Jamshoro, Pakistan. Furthermore, the authors acknowledge the important material analysis provided by the Department of Geology, University of Sindh, Pakistan. The authors are also grateful to Prof. Dr. Rick Bereit, University of Utah, USA, for English editing and correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Mahar, R.B. & Sherazi, S.T.H. Methane Augmentation of Anaerobic Digestion of Food Waste in the Presence of Fe3O4 and Carbamide Capped Fe3O4 Nanoparticles. Waste Biomass Valor 11, 4093–4107 (2020). https://doi.org/10.1007/s12649-019-00732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00732-8

Keywords

Navigation