Skip to main content
Log in

Emission of Biogas from Sewage Sludge in Psychrophilic Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The stabilization of sewage sludge in Poland is continued in many sewage treatment plants in the open digestion chambers (ODC), which is a phenomenon on the European scale. The sludge is stored in them much longer, which allows obtaining high mineralization of the material, thanks to which it can be used naturally. Although this way of sludge processing is very beneficial owing to the high quality of the final product, the ODC are a source of gas emissions, because the biogas produced in them is usually not detracted. The research was carried out at the “Boguszowice” sewage treatment plant in Poland, which is equipped with two ODC with a capacity of 5781 m3 each. Within the chambers a process of stabilization of sludge is carried out based on psychrophilic digestion (i.e. temperature < 20 °C). The tests were carried out in two variants. In the first variant, the measurements of the flow of biogas produced were made directly on the open digestion chamber by means of a floating sampler. In the second variant, simulations of the digestion process under laboratory conditions were carried out. Analyzing the results, the high quality of the obtained biogas for both variants of the conducted research can be noticed. The average methane concentration in biogas for real tests was 68.5% and for laboratory tests 69.7%.

Graphical Abstract

Scheme of psychrophilic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VS:

Volatile solids

TS:

Total solids

HRT:

Hydraulic retention time

VFAs:

Volatile fatty acids

TN:

Total nitrogen

TA:

Total alkalinity

MPR:

Methane production rate

References

  1. Miksch, K., Sikora, J.: Biotechnologia ścieków. Wydawnictwo Naukowe PWN (2010)

  2. Zdebik, D., Głodniok, M., Zawartka, P.: Anaerobic digestion model analysis of the fermentation process in psychrophilic and mesophilic chamber in accordance with the amount of biogas sourced. Inżynieria Ekol. 42, 63–71 (2015). https://doi.org/10.12912/23920629/1981

    Article  Google Scholar 

  3. Iglinski, B., Buczkowski, R., Cichosz, M.: Biogas production in Poland-current state, potential and perspectives. Renew. Sustain. Energy Rev. 50, 686–695 (2015). https://doi.org/10.1016/j.rser.2015.05.013

    Article  Google Scholar 

  4. Lipińska, D.: Gospodarka odpadowa i wodno-ściekowa. Wydawnictwo Uniwersytetu Łódzkiego, Lodz (2016)

    Book  Google Scholar 

  5. Jin, N., Li, W., Shou, Z., Yuan, H., Lou, Z., Zhu, N., Cai, C.: Comparison of effects of ferric nitrate additions in thermophilic, mesophilic and psychrophilic aerobic digestion for sewage sludge. J. Taiwan Inst. Chem. Eng. 67, 346–354 (2016). https://doi.org/10.1016/j.jtice.2016.07.046

    Article  Google Scholar 

  6. Wójtowicz, A. (gospodarka komunalna)., Jędrzejewski, C., Bieniowski, M. (1964-)., Darul, H., Izba Gospodarcza “Wodociągi Polskie”., Bydgoski Dom Wydawniczy “Margrafsen”.: Modelowe rozwiązania w gospodarce osadowej. Bydgoski Dom Wydawniczy “Margrafsen” (2013)

  7. Saady, N.M.C., Mass, D.I.: Starting-up low temperature dry anaerobic digestion of cow feces and wheat straw. Renew. Energy 88, 439–444 (2016). https://doi.org/10.1016/j.renene.2015.11.066

    Article  Google Scholar 

  8. Massé, D., Gilbert, Y., Topp, E.: Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresour. Technol. 102, 641–646 (2011). https://doi.org/10.1016/j.biortech.2010.08.020

    Article  Google Scholar 

  9. Staton, K.L., Alleman, J.E., Pressley, R.L., Eloff, J.: 2nd Generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements. Proc. Water Environ. Fed. 2001, 1484–1495 (2001). https://doi.org/10.2175/193864701784993182

    Article  Google Scholar 

  10. Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I.H., Yasar, A., Ali, S., Yasmeen, T., Riaz, M.: Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab. J. Chem. 8, 780–786 (2015). https://doi.org/10.1016/j.arabjc.2013.12.016

    Article  Google Scholar 

  11. Elsgaard, L., Olsen, A.B., Petersen, S.O.: Temperature response of methane production in liquid manures and co-digestates. Sci. Total Environ. 539, 78–84 (2016). https://doi.org/10.1016/j.scitotenv.2015.07.145

    Article  Google Scholar 

  12. Simankova, M.V., Kotsyurbenko, O.R., Lueders, T., Nozhevnikova, A.N., Wagner, B., Conrad, R., Friedrich, M.W.: Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst. Appl. Microbiol. 26, 312–318 (2003). https://doi.org/10.1078/072320203322346173

    Article  Google Scholar 

  13. Gomec, C.Y., Letsiou, I., Ozturk, I., Eroglu, V., Wilderer, P.A.: Identification of Archaeal population in the granular sludge of an UASB reactor treating sewage at low temperatures. J. Environ. Sci. Health. A 43, 1504–1510 (2008). https://doi.org/10.1080/10934520802293610

    Article  Google Scholar 

  14. McKeown, R.M., Hughes, D., Collins, G., Mahony, T., O’Flaherty, V.: Low-temperature anaerobic digestion for wastewater treatment. Curr. Opin. Biotechnol. 23, 444–451 (2012). https://doi.org/10.1016/j.copbio.2011.11.025

    Article  Google Scholar 

  15. Korzeniewska, E., Zielinski, M., Filipkowska, Z., Dcbowski, M., Kwiatkowski, R.: Methanogenic archaeon as biogas producer in psychrophilic conditions. J. Clean. Prod. 76, 190–195 (2014). https://doi.org/10.1016/j.jclepro.2014.04.063

    Article  Google Scholar 

  16. Mohd Yasin, N.H., Sanchez-Torres, V., Maeda, T.: Enhanced reduction of waste activated sludge at a low temperature by locally isolated strains Pseudomonas sp. VNT and Aeromonas sp. VNT. Bioresour. Technol. 174, 134–141 (2014). https://doi.org/10.1016/j.biortech.2014.10.005

    Article  Google Scholar 

  17. Collins, G., Mahony, T., O’Flaherty, V.: Stability and reproducibility of low-temperature anaerobic biological wastewater treatment. FEMS Microbiol. Ecol. 55, 449–458 (2006). https://doi.org/10.1111/j.1574-6941.2005.00034.x

    Article  Google Scholar 

  18. Huppes, G., Deetman, S., Huele, R., Kleijn, R., de Koning, A., van der Voet, E.: Strategic design of long-term climate policy instrumentations, with exemplary EU focus. Clim. Policy 17, 1–24 (2016). https://doi.org/10.1080/14693062.2016.1242059

    Article  Google Scholar 

  19. Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Franson, M.A.H., American Public Health Association, American Water Works Association, Water Environment Federation: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (1998)

    Google Scholar 

  20. Zhai, N., Zhang, T., Yin, D., Yang, G., Wang, X.: Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag. 38, 126–131 (2015). https://doi.org/10.1016/j.wasman.2014.12.027

    Article  Google Scholar 

  21. Demirbas, A., Alamoudi, R.H., Ahmad, W., Sheikh, M.H.: Optimization of municipal solid waste (MSW) disposal in Saudi Arabia. Energy Sources A 38, 1929–1937 (2016). https://doi.org/10.1080/15567036.2015.1034385

    Article  Google Scholar 

  22. Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H., Park, J.M.: Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48, 1–14 (2014). https://doi.org/10.1016/j.watres.2013.06.041

    Article  Google Scholar 

  23. Wang, G., Dai, X., Zhang, D., He, Q., Dong, B., Li, N., Ye, N.: Two-phase high solid anaerobic digestion with dewatered sludge: improved volatile solid degradation and specific methane generation by temperature and pH regulation. Bioresour. Technol. 259, 253–258 (2018). https://doi.org/10.1016/J.BIORTECH.2018.03.074

    Article  Google Scholar 

  24. Dudek, J., Zaleska-Bartosz, J.: Pozyskiwanie i wykorzystanie biogazu do celów energetycznych. Probl. Ekol. 14, 13–16 (2010)

    Google Scholar 

  25. Holewa, J., Król, A., Kukulska-Zając, E.: Biogas as an alternative to natural gas? Chem. Sci. 67, 1073–1078 (2013). https://doi.org/10.1186/s13068-017-0947-1

    Article  Google Scholar 

  26. Krich, K., Augenstein, D., Benemann, J., Rutledge, B., Salour, D.: Biomethane from dairy waste a sourcebook for the production and use of renewable natural gas in california. Western United Dairymen, Modesto (2005)

    Google Scholar 

  27. Olugasa, T.T., Odesola, I.F., Oyewola, M.O.: Energy production from biogas: a conceptual review for use in Nigeria. Renew. Sustain. Energy Rev. 32, 770–776 (2014). https://doi.org/10.1016/J.RSER.2013.12.013

    Article  Google Scholar 

  28. Yuan, Q., Sparling, R., Oleszkiewicz, J.A.: VFA generation from waste activated sludge: effect of temperature and mixing. Chemosphere 82, 603–607 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.084

    Article  Google Scholar 

  29. Dai, X.H., Duan, N.N., Dong, B., Dai, L.L.: High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manag. 33, 308–316 (2013). https://doi.org/10.1016/j.wasman.2012.10.018

    Article  Google Scholar 

  30. Henze, M.: Biological wastewater treatment: principles, modelling and design. IWA Pub, London (2008)

    Google Scholar 

  31. Voelklein, M.A.A., Jacob, A., O’ Shea, R.O., Murphy, J.D.D., Shea, R., Murphy, J.D.D.: Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 202, 172–180 (2016). https://doi.org/10.1016/j.biortech.2015.12.001

    Article  Google Scholar 

  32. Jun, D., Yong-sheng, Z., Mei, H., Wei-hong, Z.: Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J. Hazard. Mater. 163, 717–722 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.066

    Article  Google Scholar 

  33. Hao, J., Wang, H.: Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: biological responses to fermentation temperature. Bioresour. Technol. 175, 367–373 (2015). https://doi.org/10.1016/j.biortech.2014.10.106

    Article  Google Scholar 

  34. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010). https://doi.org/10.1007/s00253-009-2246-7

    Article  Google Scholar 

  35. Montañés Alonso, R., Solera del Río, R., Pérez García, M.: Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass Bioenergy 93, 107–115 (2016). https://doi.org/10.1016/j.biombioe.2016.05.028

    Article  Google Scholar 

  36. Duan, N., Dong, B., Wu, B., Dai, X.: High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresour. Technol. 104, 150–156 (2012). https://doi.org/10.1016/j.biortech.2011.10.090

    Article  Google Scholar 

  37. Zhou, X., Wang, Q., Jiang, G.: Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresour. Technol. 182, 267–271 (2015). https://doi.org/10.1016/j.biortech.2015.01.132

    Article  Google Scholar 

  38. Montag, D., Schink, B.: Biogas process parameters energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl. Microbiol. Biotechnol. 100, 1019–1026 (2016). https://doi.org/10.1007/s00253-015-7069-0

    Article  Google Scholar 

  39. Deng, L., Chen, C., Zheng, D., Yang, H., Liu, Y., Chen, Z.: Effect of temperature on continuous dry fermentation of swine manure. J. Environ. Manage. 177, 247–252 (2016). https://doi.org/10.1016/j.jenvman.2016.04.029

    Article  Google Scholar 

  40. Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F., Peña, M.: Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresour. Technol. 185, 225–233 (2015). https://doi.org/10.1016/j.biortech.2015.03.002

    Article  Google Scholar 

  41. Yang, W.Bin, Yuan, C.S., Tong, C., Yang, P., Yang, L., Huang, B.Q.: Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in situ in three environmental habitats in a subtropical estuarine wetland. Mar. Pollut. Bull. 119, 289–298 (2017). https://doi.org/10.1016/j.marpolbul.2017.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Piechota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilarski, G., Kyncl, M., Stegenta, S. et al. Emission of Biogas from Sewage Sludge in Psychrophilic Conditions. Waste Biomass Valor 11, 3579–3592 (2020). https://doi.org/10.1007/s12649-019-00707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00707-9

Keywords

Navigation