Fermentative Production of Ethanol from Acid Hydrolyzate of Rice Water Waste Using Saccharomyces cerevisiae: Experimental and Kinetic Studies

  • Masoud Hatami-manesh
  • Habibollah YounesiEmail author
  • Nader Bahramifar
  • Maedeh Mohammadi
  • Hossein Khakpour
Original Paper


Rice water waste, a starch-bearing effluent waste stream, was utilized as an abundant and low-cost substrate for ethanol production. Prior to the fermentation process, rice water waste was hydrolyzed using dilute H2SO4 solution. To attain the highest concentration of sugars with a minimum amount of inhibitory by-products during the acid hydrolysis, different acid concentrations (2–6 v/v %), hydrolysis temperatures (60–100 °C) and reaction times (0–200 min) were examined. The maximum catalytic efficiency (ηE = 27.36) was obtained using 4% H2SO4 at 80 °C for 100 min; wherein, the concentration of reducing sugars, furfural and 5- hydroxymethylfurfural (HMF) in the hydrolyzate was 43.32, 0.29 and 0.17 g L−1, respectively. This hydrolyzate was utilized as a substrate for ethanol fermentation using Saccharomyces cerevisiae; the maximum ethanol concentration, yield, and cell density were 18.65 g L−1, 0.41 g ethanol g−1 sugar and 3.68 g L−1, respectively. The kinetics of the acid hydrolysis process was studied using “two-fraction” model. The kinetic constants indicated that the rate of release of reducing sugars from starch was high; while, the degradation rate of reducing sugar to furfural and HMF was negligible. Moreover, multi-response nonlinear regression analysis was performed on the experimental data to determine the kinetic parameters regarding cell growth, substrate utilization, and ethanol production.


Ethanol Rice water waste Kinetics Acid hydrolysis Furfural 



The present research was made possible by the sponsorship and financial support of the Ministry of Science of Iran and the Tarbiat Modares University (TMU). The authors wish also to thank Mrs. Haghdoust (Technical Assistant of Environmental Laboratory) of TMU for her cooperation.


  1. 1.
    Visioli, L.J., Stringhini, F.M., Salbego, P.R.S., Chielle, D.P., Ribeiro, G.V., Gasparotto, J.M., Aita, B.C., Klaic, R., Moscon, J.M., Mazutti, M.A.: Chapter 3—use of agroindustrial residues for bioethanol production. In: Gupta, V.K., Kubicek, M.G.T.P., Xu, J.S. (eds.) Bioenergy Research: Advances and Applications, pp. 49–56. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  2. 2.
    Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H., Mohamed, A.R.: Bioconversion of synthesis gas to second generation biofuels: a review. Renew. Sustain. Eng. Rev. 15(9), 4255–4273 (2011). CrossRefGoogle Scholar
  3. 3.
    Verma, G., Nigam, P., Singh, D., Chaudhary, K.: Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72(3), 261–266 (2000)CrossRefGoogle Scholar
  4. 4.
    Oberoi, H.S., Vadlani, P.V., Brijwani, K., Bhargav, V.K., Patil, R.T.: Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 45(8), 1299–1306 (2010)CrossRefGoogle Scholar
  5. 5.
    Lin, Y., Tanaka, S.: Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69(6), 627–642 (2006)CrossRefGoogle Scholar
  6. 6.
    Romero, I., Ruiz, E., Castro, E., Moya, M.: Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 88(5–6), 633–640 (2010). CrossRefGoogle Scholar
  7. 7.
    Sivers, M.V., Zacchi, G.: A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 51, 43–52 (1995). CrossRefGoogle Scholar
  8. 8.
    Jones, J., Semrau, K.: Wood hydrolysis for ethanol production—previous experience and the economics of selected processes. Biomass 5(2), 109–135 (1984)CrossRefGoogle Scholar
  9. 9.
    Iranmahboob, J., Nadim, F., Monemi, S.: Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22(5), 401–404 (2002)CrossRefGoogle Scholar
  10. 10.
    Karimi, K., Kheradmandinia, S., Taherzadeh, M.J.: Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 30(3), 247–253 (2006)CrossRefGoogle Scholar
  11. 11.
    Rodrı́guez-chong, A., Ramı́rez, J.A., Garrote, G., Vázquez, M.: Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61(2), 143–152 (2004). CrossRefGoogle Scholar
  12. 12.
    APHA: Standard methods for the examination of water and wastewater, 20th edn. Am. Pub. Health Assoc. Publ., Washington (1998)Google Scholar
  13. 13.
    TAPPI: Lignin in wood. Official standard T13 m-54. TAPPI, New York (1991)Google Scholar
  14. 14.
    TAPPI: Hollocellulose in wood. Official standard T19 m-54. TAPPI, New York (1954)Google Scholar
  15. 15.
    Nedeltscheva, M., Stoilkov, G., Popova, S.: A modified analysis method of starch determination by iodine spectrophotometry. Starch - Stärke 27(9), 298–301 (1975). CrossRefGoogle Scholar
  16. 16.
    Miller, G.L.: Use of dinitrosalicylic acid reagen t for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). CrossRefGoogle Scholar
  17. 17.
    Tu, D., Xue, S., Meng, C., Espinosa-Mansilla, A., Munoz de la Pena, A., Salinas Lopez, F.: Simultaneous determination of 2-furfuraldehyde and 5-(hydroxymethyl)-2-furfuraldehyde by derivative spectrophotometry. J. Agric. Food Chem. 40(6), 1022–1025 (1992). CrossRefGoogle Scholar
  18. 18.
    Saeman, J.F.: Kinetics of wood saccharification—hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind. Eng. Chem. 37(1), 43–52 (1945). CrossRefGoogle Scholar
  19. 19.
    Téllez-Luis, S.J., Ramírez, J.A., Vázquez, M.: Mathematical modelling of hemicellulosic sugar production from sorghum straw. J. Food Eng. 52(3), 285–291 (2002). CrossRefGoogle Scholar
  20. 20.
    Bustos, G., Ramírez, J., Garrote, G., Vázquez, M.: Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid. Appl. Biochem. Biotechnol. 104(1), 51–68 (2003). CrossRefGoogle Scholar
  21. 21.
    Aiba, S., Shoda, M., Nagatani, M.: Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 10(6), 845–864 (1968). CrossRefGoogle Scholar
  22. 22.
    Pirt, S.J.: The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B 163(991), 224–231 (1965). CrossRefGoogle Scholar
  23. 23.
    Luedeking, R., Piret, E.L.: A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1(4), 393–412 (1959). CrossRefGoogle Scholar
  24. 24.
    Amrane, A., Prigent, Y.: Mathematical model for lactic acid production from lactose in batch culture: model development and simulation. J. Chem. Technol. Biotechnol. 60(3), 241–246 (1994). CrossRefGoogle Scholar
  25. 25.
    Asenjo, J.A., Jew, C.: Primary metabolite or microbial protein from cellulose: conditions, kinetics, and modeling of the simultaneous saccharification and fermentation to citric acid. Ann. N. Y. Acad. Sci. 413(1), 211–217 (1983). CrossRefGoogle Scholar
  26. 26.
    Janga, K.K., Hägg, M.-B., Moe, S.T.: Influence of acid concentration, temperature, and time on the concentrated sulfuric acid hydrolysis of pinewood and aspenwood: a statistical approach. Bioresources 7(1), 0391–0411 (2011)Google Scholar
  27. 27.
    Orozco, A.M., Al-Muhtaseb, A.A.H., Rooney, D., Walker, G.M., Aiouache, F., Ahmad, M.: Fermentable sugars recovery from lignocellulosic waste-newspaper by catalytic hydrolysis. Environ. Technol. 34(22), 3005–3016 (2013). CrossRefGoogle Scholar
  28. 28.
    Gupta, R., Sharma, K.K., Kuhad, R.C.: Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour. Technol. 100(3), 1214–1220 (2009). CrossRefGoogle Scholar
  29. 29.
    Kim, K., Hamdy, M.K.: Acid-hydrolysis of sweet-potato for ethanol-production. Biotechnol. Bioeng. 27(3), 316–320 (1985). CrossRefGoogle Scholar
  30. 30.
    Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L.: Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 101, 1036–1043 (2010)CrossRefGoogle Scholar
  31. 31.
    Ga´mez, S., Ramı´rez, J.A., Garrote, G., Va´zquez, M.: Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. J. Agric. Food Chem. 52(13), 4172–4177 (2004)CrossRefGoogle Scholar
  32. 32.
    Razmovski, N.R., ŠĆIBAN, M.B., VUČUROVIĆ, V.M.: Bioethanol production from Jerusalem artichoke by acid hydrolysis. Romanian Biotechnol. Lett. 16(5), 6497–6503 (2011)Google Scholar
  33. 33.
    Tasić, M.B., Konstantinović, B.V., Lazić, M.L., Veljković, V.B.: The acid hydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 43, 208–211 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental Science, Faculty of Natural ResourcesTarbiat Modares UniversityNoorIran
  2. 2.Faculty of Chemical EngineeringBabol Noushirvani University of TechnologyBabolIran
  3. 3.Department of Chemical EngineeringAmol Branch, Islamic Azad UniversityAmolIran

Personalised recommendations