Skip to main content

Enzymatic Hydrolysis of Proteins from Chicken Viscera in the Presence of an Ionic Liquid Enhanced Their Antioxidant Properties

Abstract

Aiming to explore the use of Ionic liquids (ILs) not yet described in the literature, this work evaluated the hydrolysis of proteins from chicken viscera using the protease Alcalase modified and unmodified by the compound tetramethylammonium bromide. The protein hydrolysates produced in the presence of the IL presented values of antioxidant activities 40% higher than the hydrolysates obtained without IL. For DPPH-radical scavenging, the enzymatic hydrolysis performed using an amount of enzyme adjusted to 120 U/mL, pH 7.0 and 40 °C resulted in protein hydrolysates with maximum antioxidant activity of 188.11 µmol TE/g. For FRAP assay, the protein hydrolysates produced with 60 U/mL, pH 9.0 and 40 °C showed the highest antioxidant potential (1126.33 µmol TE/g). In the presence of the IL, it was possible to obtain protein hydrolysates from chicken viscera with similar antioxidant activities, compared to the protein hydrolysates produced without IL, using 1/3 of the amount of enzyme.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Neto, B.A.D., Spencer, J.: The impressive chemistry, applications and features of ionic liquids: properties, catalysis & catalysts and trends. J. Braz. Chem. 23, 987–1007 (2012)

    Article  Google Scholar 

  2. 2.

    Santiago, R.S., Santos, G.R., Aznar, M.: UNIQUAC correlation of liquid-liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach. Fluid Phase Equilib. 293, 66–72 (2010)

    Article  Google Scholar 

  3. 3.

    Zhang, Q., Zhang, S., Deng, Y.: Recent advances in ionic liquid catalysis. Green Chem. 13, 2619–2637 (2011)

    Article  Google Scholar 

  4. 4.

    Armand, M., Macfarlane, D.R., Scrosati, B., Endres, F., Ohno, H.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  Google Scholar 

  5. 5.

    Kragl, U., Eckstein, M., Kaftzik, N.: Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13, 565–571 (2002)

    Article  Google Scholar 

  6. 6.

    Moniruzzaman, M., Kamiya, N., Goto, M.: Activation and stabilization of enzymes in ionic liquids. Org. Biomol. Chem. 8, 2887–2899 (2010)

    Article  Google Scholar 

  7. 7.

    Naushad, M., Othman, Z.A.A.L., Kahn, A.B., Ali, M.: Effect of ionic liquid on acitivty, stability, and structure of enzymes: a review. Int. J. Biol. Macromol. 51, 555–560 (2012)

    Article  Google Scholar 

  8. 8.

    Sáez, F., Ballesteros, M., Ballesteros, I., Manzanares, P., Oliva, J.M., Negro, M.J.: Enzymatic hydrolysis from carbohydrates of barley straw pretreated by ionic liquids. J. Chem. Technol. Biotechnol. 88, 937–941 (2013)

    Article  Google Scholar 

  9. 9.

    Silva, V.G., De Castro, R.J.S.: Biocatalytic action of proteases in ionic liquids: improvements on their enzymatic activity, thermal stability and kinetic parameters. Int. J. Biol. Macromol. 114, 124–129 (2018)

    Article  Google Scholar 

  10. 10.

    Zhang, G., Holler, T., Napper, A.: Protease Assays. In: Holler, T., Napper, A. (eds.) Assay Guidance Manual. Eli Lilly & Company, Indianapolis (2012)

    Google Scholar 

  11. 11.

    Vijayaraghavan, P., Lazarus, S., Vincent, S.G.P.: De-hairing protease production by an isolated Bacillus cereus strain at under solid-state fermentation using cow dung: biosynthesis and properties. Saudi J. Biol. Sci. 21, 27–34 (2014)

    Article  Google Scholar 

  12. 12.

    De Castro, R.J.S., Ohara, A., Nishide, T.G., Albernaz, J.R.M., Soares, M.H., Sato, H.H.: A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal. Agric. Biotechnol. 4, 199–207 (2015)

    Article  Google Scholar 

  13. 13.

    Jamdar, S.N., Harikumar, P.: Autolytic degradation of chicken intestinal proteins. Bioresour. Technol. 96, 1276–1284 (2005)

    Article  Google Scholar 

  14. 14.

    Grazziotin, A., Pimentel, F.A., Sangali, S., Dejong, E.V., Brandelli, A.: Production of feather protein hydrolysate by keratinolytic bacterium. Vibrio sp. kr2. Bioresour. Technol. 98, 3172–3175 (2007)

    Article  Google Scholar 

  15. 15.

    Lasekan, A., Bakar, F.A., Hashim, D.: Potential of chicken by-produtcs as sources of useful biological resources. Waste Manage. 33, 552–565 (2013)

    Article  Google Scholar 

  16. 16.

    Bueno-Solano, C., López-Cervantes, J., Campas-Baypoli, O.N., Lauterio-García, R., Adan-Bante, N.P., Sánchez-Machado, D.I.: Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem. 112, 671–675 (2009)

    Article  Google Scholar 

  17. 17.

    Pagán, J., Ibarz, A., Falguera, V., Benítez, R.: Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. J. Food Eng. 119, 655–659 (2013)

    Article  Google Scholar 

  18. 18.

    De Castro, R.J.S., Sato, H.H.: Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res. Int. 74, 185–198 (2015)

    Article  Google Scholar 

  19. 19.

    Huang, D., Ou, B., Prior, R.: The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856 (2005)

    Article  Google Scholar 

  20. 20.

    Charney, J., Tomarelli, R.M.: A colorimetric method for the determination of the proteolytic activity of duodenal juice. J. Biol. Chem. 171, 501–505 (1947)

    Google Scholar 

  21. 21.

    Hartree, E.F.: Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972)

    Article  Google Scholar 

  22. 22.

    Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., Nasri, M.: Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem. 114, 1198–1205 (2009)

    Article  Google Scholar 

  23. 23.

    EMBRAPA, Comunicado técnico 125, Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT-2010/11964/1/cot-125.pdf 10 Feb 2018

  24. 24.

    Zhao, H.: Methods for stabilizing and activating enzymes in ionic liquids—a review. J. Chem. Technol. Biotechnol. 85, 891–907 (2010)

    Article  Google Scholar 

  25. 25.

    Gao, W., Zhang, F., Zhang, G., Zhou, C.: Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem. Eng. J. 99, 67–84 (2015)

    Article  Google Scholar 

  26. 26.

    Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M.: Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 48, 295–314 (2010)

    Article  Google Scholar 

  27. 27.

    Rodriguez, O., Cristovao, R.O., Tavares, A.P.M., Macedo, E.A.: Study of the alkyl chain length on laccase stability and enzymatic kinetic with imidazolium ionic liquids. Appl. Biochem. Biotechnol. 164, 524–533 (2011)

    Article  Google Scholar 

  28. 28.

    Smirnova, N.A., Safonova, E.A.: Ionic liquids as surfactants. Russ. J. Phys. Chem. 84, 1695–1704 (2010)

    Article  Google Scholar 

  29. 29.

    Rantwijk, F., Sheldon, R.A.: Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007)

    Article  Google Scholar 

  30. 30.

    Dong, X., Fan, Y., Zhang, H., Zhong, Y., Yang, Y., Miao, J., Hua, S.: Inhibitory effects of ionic liquids on the latic dehydrogenase activity. Int. J. Biol. Macromol. 86, 155–161 (2016)

    Article  Google Scholar 

  31. 31.

    Fan, Y., Dong, X., Yan, L., Li, D., Hua, S., Hu, C., Pan, C.: Evaluation of the toxicity of ionic liquids on trypsin: a mechanism study. Chemosphere 148, 241–247 (2016)

    Article  Google Scholar 

  32. 32.

    Fan, Y., Dong, X., Li, X., Zhong, Y., Kong, J., Hua, S., Miao, J., Li, Y.: Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity. Spectrochim. Acta A. 159, 128–133 (2016)

    Article  Google Scholar 

  33. 33.

    Fan, Y., Wang, X., Li, J., Zhang, L., Yang, L., Gao, P., Zhou, Z.: Kinectic study of the inhibition of ionic liquids on the trypsin activity. J. Mol. Liq. 252, 392–398 (2018)

    Article  Google Scholar 

  34. 34.

    Klahn, M., Lim, G.S., Seduraman, A., Wu, P.: On the different roles of anions and cations in the solvation of enzymes in ionic liquids. Phys. Chem. Chem. 13, 1649–1662 (2011)

    Article  Google Scholar 

  35. 35.

    Kumari, M., Dohare, N., Maurya, N., Dohare, R., Patel, R.: Effect of 1-methyl-3- octyleimmidazolium chloride on the stability and activity of lysozyme: a spectroscopic and molecular dynamics studies. J. Biomol. Struct. Dyn. 35, 2016–2030 (2017)

    Article  Google Scholar 

  36. 36.

    Fan, Y., Dong, X., Zhong, Y., Li, J., Miao, J., Hua, S., Li, Y., Cheng, B., Chen, W.: Effects of ionic liquids on the hydrolysis of casein by lumbrokinase. Biochem. Eng. J. 109, 35–42 (2016)

    Article  Google Scholar 

  37. 37.

    Siemensma, A.D., Weijer, W.J., Bak, H.J.: The importance of peptide lengths in hypoallergenic infant formulas. Trends Food Sci. Technol. 4, 16–21 (1993)

    Article  Google Scholar 

  38. 38.

    Boza, J.J., Moennoz, D., Vuichoud, J., Jarret, A.R., Gaudard-De-Weck, D., Ballevre, O.: Protein hydrolysate vs free amino acid- based diets on the nutritional recovery of the starved rat. Eur. J. Nutr. 39, 237–243 (2000)

    Article  Google Scholar 

  39. 39.

    Althouse, P.J., Dinakar, P., Kilara, A.: Screening of proteolytic enzymes to enhance foaming of whey protein isolates. J. Food Sci. 60, 1110–1112 (1995)

    Article  Google Scholar 

  40. 40.

    Bernadini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neil, E., Mullen, A.M.: Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by products. Food Chem. 124, 1296–1307 (2011)

    Article  Google Scholar 

  41. 41.

    Doucet, D., Otter, D.E., Gauthier, S.F., Foegeding, E.A.: Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. J. Agric. Food Chem. 51, 6300–6308 (2003)

    Article  Google Scholar 

  42. 42.

    Sarmadi, H., Ismail, A.: Antioxidative peptides from food proteins: a review. Peptides 31, 1949–1956 (2010)

    Article  Google Scholar 

  43. 43.

    Guo, H., Kouzuma, Y., Yonekura, M.: Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113, 238–245 (2009)

    Article  Google Scholar 

  44. 44.

    Luna-Vital, D.A., Mojica, L., De Mejía, E.G., Mendoza, S., Loarca-Piña, G.: Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Res. Int. 76, 39–50 (2015)

    Article  Google Scholar 

  45. 45.

    Archer, M.C., Ragnarsson, J.O., Tannenbaum, S.R., Wang, D.I.C.: Enzymatic solubilization of an insoluble substrate fish protein concentrate: process and kinetic considerations. Biotechnol. Bioeng. 15, 181–196 (1973)

    Article  Google Scholar 

  46. 46.

    Montoya, C.A., Leterme, P., Victoria, N.F., Toro, O., Soufrant, W.B., Beebe, S.: Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris). J. Agric. Food Chem. 56, 2183–2191 (2008)

    Article  Google Scholar 

  47. 47.

    Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, 3rd edn. Portland Press, London (2014)

    Google Scholar 

  48. 48.

    Sukan, G., Andrews, A.T.: Application of the plastein reaction to caseins and to skim milk powder. I. Protein hydrolysis and plastein formation. J. Dairy Res. 49, 265–278 (1982)

    Article  Google Scholar 

  49. 49.

    Betancur-Ancona, D., Sosa-Espinoza, T., Ruiz-Ruiz, J., Segura-Campos, M., Chel-Guerrero, L.: Enzymatic hydrolysis of hard-to-cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. Int. J. Food Sci. Technol. 49, 2–8 (2014)

    Article  Google Scholar 

  50. 50.

    Ortega, N., Diego, S., Perez-Mateos, M., Busto, M.D.: Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chem. 88, 209–217 (2004)

    Article  Google Scholar 

  51. 51.

    Silvestre, M.P.C., Hamon, M., Yvon, M.: Analysis of protein hydrolysates. 2. Characterization of casein hydrolysates by a rapid peptide quantification method. J. Agric. Food Chem. 42, 2783–2789 (1994)

    Article  Google Scholar 

  52. 52.

    Irvine, G.B., Shaw, C.: High-performance gel permeation chromatography of proteins and peptides on columns of TSK- G2000-SW and TSK-G3000-SWsA volatile solvent giving separation based on charge and size of polypeptides. Anal. Biochem. 155, 141–148 (1986)

    Article  Google Scholar 

  53. 53.

    Spreti, N., Bartoletti, A., Di Profrio, P., Germani, R., Savelli, G.: Effects of ionic and zwitterionic surfactants on the stabilization of bovine catalase. Biotechnol. Prog. 11, 107–111 (1995)

    Article  Google Scholar 

  54. 54.

    Savelli, G., Spreti, N., Di Profrio, P.: Enzyme activity and stability control by amphiphlic self-organizing systems in aqueous solution. Curr. Opin. Colloid Interface Sci. 5, 111–117 (2000)

    Article  Google Scholar 

  55. 55.

    Yang, Z., Deng, J., Chen, L.F.: Effect of ionic and non-ionic surfactants of the activity and stability of mushroom tyrosinase. J. Mol. Catal. B Enzym. 47, 79–85 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was substantially supported by the Department of Food Science, School of Food Engineering, University of Campinas, which is gratefully acknowledged. Acknowledgment to the Scientific Initiation Program of UNICAMP (PIBIC) for the opportunity to develop the research project and grant funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruann Janser Soares de Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, V.G., de Castro, R.J.S. Enzymatic Hydrolysis of Proteins from Chicken Viscera in the Presence of an Ionic Liquid Enhanced Their Antioxidant Properties. Waste Biomass Valor 11, 3183–3193 (2020). https://doi.org/10.1007/s12649-019-00693-y

Download citation

Keywords

  • Ionic liquids
  • Proteases
  • Enzymatic hydrolysis
  • Antioxidant activity