Skip to main content

Optimization Routes for the Bioleaching of MSWI Fly and Bottom Ashes Using Microorganisms Collected from a Natural System

Abstract

This paper presents a route for the treatment of MSWI fly (FA) and bottom ashes (BA) using microorganisms to critically assess whether bioleaching is within reach of effective industrial application. The leaching of metals from BA and FA was investigated in a controlled laboratory environment using a culture isolated from a natural system where the dominant strains are acidophilic bacteria, mainly Acidothiobacillus thiooxidans and Acidothiobacillus ferrooxidans. The community of microorganisms (mostly acidophilic, S- and Fe-oxidizing bacteria) was collected directly from overflows and ponds at the sediment–water interface of a natural system near a post-mining site. Pre-cultivation was done in 250 mL flasks followed by the adaptation to the different substrates (both FA and BA). The effect of different material pre-treatment and elemental sulphur concentrations were evaluated for both BA and FA, at a starting pH of 4. The bioleaching of BA and FA substrates experienced good yields of metal extraction with an optimum duration of two weeks. The results showed that more than 90% Zn, Cu, and 10% Pb are removed from FA; while 100% Cu, 80% Zn and 20% Pb are removed from BA samples. Batch experiments with regenerating ion-exchange resins did not perform well for metal recovery, but could serve as a valuable decontamination step. The techniques used here with FA and BA can be used for urban mining purposes (e.g. ashes and other meal-rich anthropogenic wastes), but also low-grade ores in the mining industry, contributing to resource recovery or decontamination agendas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lee, J.C., Pandey, B.D.: Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag. 32(1), 3–18 (2012). https://doi.org/10.1016/j.wasman.2011.08.010

    Article  Google Scholar 

  2. Quina, M.J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R., Lederer, J.: Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ. 635, 526–542 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.150

    Article  Google Scholar 

  3. Valdes, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake 2nd, R., Holmes, D.S.: Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597 (2008). https://doi.org/10.1186/1471-2164-9-597

    Article  Google Scholar 

  4. Boesch, M.E., Vadenbo, C., Saner, D., Huter, C., Hellweg, S.: An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag. 3, 102 (2013). https://doi.org/10.1016/j.wasman.2013.10.019

    Article  Google Scholar 

  5. Funari, V., Braga, R., Bokhari, S.N., Dinelli, E., Meisel, T.: Solid residues from Italian municipal solid waste incinerators: a source for “critical” raw materials. Waste Manag. 45, 206–216 (2015). https://doi.org/10.1016/j.wasman.2014.11.005

    Article  Google Scholar 

  6. Bosecker, K.: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997). https://doi.org/10.1111/j.1574-6976.1997.tb00340.x

    Article  Google Scholar 

  7. Halinen, A.-K., Rahunen, N., Kaksonen, A.H., Puhakka, J.A.: Heap bioleaching of a complex sulfide ore: Part I. Effect of pH on metal extraction and microbial composition in pH controlled columns. Hydrometallurgy 98(1–2), 92–100 (2009). https://doi.org/10.1016/j.hydromet.2009.04.005

    Article  Google Scholar 

  8. Sand, W., Gehrke, T., Jozsa, P.-G., Schippers, A.: (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175 (2001). https://doi.org/10.1016/s0304-386x(00)00180-8

    Article  Google Scholar 

  9. Rawlings, D.E.: Heavy metal mining using microbes. Annu. Rev. Microbiol. 56, 65–91 (2002). https://doi.org/10.1146/annurev.micro.56.012302.161052

    Article  Google Scholar 

  10. Ramanathan, T., Ting, Y.P.: Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles. Chemosphere 160, 54–61 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.055

    Article  Google Scholar 

  11. Funari, V., Makinen, J., Salminen, J., Braga, R., Dinelli, E., Revitzer, H.: Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag. 60, 397–406 (2017). https://doi.org/10.1016/j.wasman.2016.07.025

    Article  Google Scholar 

  12. Dinelli, E., Lucchini, F., Fabbri, M., Cortecci, G.: Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). J. Geochem. Explor. 74, 141–152 (2001). https://doi.org/10.1016/S0375-6742(01)00180-7

    Article  Google Scholar 

  13. Cappelletti, M., Ghezzi, D., Zannoni, D., Capaccioni, B., Fedi, S.: Diversity of Methane-Oxidizing bacteria in soils from hot lands of Medolla (Italy) featured by anomalous high-temperatures and biogenic CO2 emission. Microbes Environ 31(4), 369–377 (2016)

    Article  Google Scholar 

  14. Silverman, M.P.: Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77(5), 642–647 (1959)

    Google Scholar 

  15. Gomes, H.I., Funari, V., Mayes, W.M., Rogerson, M., Prior, T.J.: Recovery of Al, Cr and V from steel slag by bioleaching: batch and column experiments. J. Environ. Manage. 222, 30–36 (2018). https://doi.org/10.1016/j.jenvman.2018.05.056

    Article  Google Scholar 

  16. Mäkinen, J., Bachér, J., Kaartinen, T., Wahlström, M., Salminen, J.: The effect of flotation and parameters for bioleaching of printed circuit boards. Miner. Eng. 75, 26–31 (2015). https://doi.org/10.1016/j.mineng.2015.01.009

    Article  Google Scholar 

  17. Mishra, D., Dong, J.K., David, E.R., Jong, G.A., Young, H.R.: Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 152, 1082–1091 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.083

    Article  Google Scholar 

  18. Chen, S., Yang, Y., Liu, C., Dong, F., Liu, B.: Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141, 162–168 (2015). https://doi.org/10.1016/j.chemosphere.2015.06.082

    Article  Google Scholar 

  19. Gomes, H.I., Jones, A., Rogerson, M., Greenway, G.M., Lisbona, D.F., Burke, I.T., Mayes, W.M.: Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins. J. Environ. Manage. 187, 384–392 (2017). https://doi.org/10.1016/j.jenvman.2016.10.063

    Article  Google Scholar 

  20. Gomes, H.I., Jones, A., Rogerson, M., Burke, I.T., Mayes, W.M.: Vanadium removal and recovery from bauxite residue leachates by ion exchange. Environ. Sci. Pollut. Res. 23(22), 23034–23042 (2016). https://doi.org/10.1007/s11356-016-7514-3

    Article  Google Scholar 

  21. Sekito, T., Dote, Y., Onoue, K., Sakanakura, H., Nakamura, K.: Characteristics of element distributions in an MSW ash melting treatment system. Waste Manage. 34(9), 1637–1643 (2014). https://doi.org/10.1016/j.wasman.2014.04.009

    Article  Google Scholar 

  22. Funari, V., Mantovani, L., Vigliotti, L., Tribaudino, M., Dinelli, E., Braga, R.: Superparamagnetic iron oxides nanoparticles from municipal solid waste incinerators. Sci. Total Environ. 621, 687–696 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.289

    Article  Google Scholar 

  23. Inkaew, K., Saffarzadeh, A., Shimaoka, T.: Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash. Waste Manage. 52, 159–168 (2016). https://doi.org/10.1016/j.wasman.2016.03.019

    Article  Google Scholar 

  24. Bogush, A., Stegemann, J.A., Wood, I., Roy, A.: Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities. Waste Manage. 36, 119–129 (2015). https://doi.org/10.1016/j.wasman.2014.11.017

    Article  Google Scholar 

  25. Rodríguez, Y., Ballester, A., Blázquez, M.L., González, F., Munoz, J.A.: New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71, 107–119 (2003). https://doi.org/10.1016/S0304-386X(03)00172-5

    Article  Google Scholar 

Download references

Acknowledgement

The financial support by United Kingdom Natural Environment Research Council (NERC: NE/K015648/1), Resource Recovery from Waste programme (NE/L014211/1) is acknowledged. The Royal Society fellowship 2016 (Accademia Nazionale dei Lincei) and the SIMP-2016 research grant (Società Italiana di Mineralogia e Petrografia) to V.F. sustained this joint research. Chemical analyses were greatly assisted by Bob Knight and Michael Thompson. Thanks to Mark Anderson, Kim Rosewell and Elena Lucca for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Funari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Funari, V., Gomes, H.I., Cappelletti, M. et al. Optimization Routes for the Bioleaching of MSWI Fly and Bottom Ashes Using Microorganisms Collected from a Natural System. Waste Biomass Valor 10, 3833–3842 (2019). https://doi.org/10.1007/s12649-019-00688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00688-9

Keywords

  • Municipal solid waste incineration (MSWI)
  • MSWI bottom ash
  • MSWI fly ash
  • Ion exchange resins
  • Resource recovery
  • Acidophilic bacteria