Skip to main content
Log in

Insecticidal Effect of Olive Mill Wastewaters on Potosia opaca (Coleoptera: Scarabeidae) Larva

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Olive mill wastewaters (OMW) are an environmental problem in olive oil producing countries such as Morocco. OMW are characterized by an acidic pH, a high electrical conductivity, and a composition rich in water, organic matter, dry matter and phenolic compounds. These effluents are usually dumped directly into the ecosystems without any prior treatment. Therefore, to mitigate the effects of OMW on the environment and to get benefit from its high phenolic content, we opted to use them as bio-insecticides in their crude form. Thus, crude OMW were tested by spray toxicity bioassay against Potosia opaca var. cardui Gyllenhal larva. The results showed that crude OMW were effective against this pest causing a weight loss similar to Cordus insecticide (17% vs. 15%) and mortality almost similar to Kemaban insecticide. In spray toxicity bioassay, the median lethal times (LT50 and LT90) showed that OMW exhibited comparable insecticidal activity (LT50 = 245.39 h, LT90 = 323.86 h) to Kemaban insecticide (0.5 µL/mL, LT50 = 208.01 h and LT90 = 233.91 h). The biocide properties of OMW depend mainly on its phenolic content. Ten phenolic compounds were identified using HPLC analysis, two of them were found to be the major monomeric phenolic compounds in OMW, hydroxytyrosol (0.248 g/L) and tyrosol (0.201 g/L). The obtained results confirm the potential application of OMW to control plant pathogens. The development of sustainable strategies based on the reuse of OMW for pests control in view to reduce the use of chemical and synthetic pesticides, may have considerable economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sedghiani, S., Raboudi, F., Bouktila, D., Makni, H., Makni, M.: A practical molecular diagnostic tool of the date moth Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in Tunisia. J. Entomol. Res. Soc. 19, 81–90 (2017)

    Google Scholar 

  2. Howard, F.W.: The animal class Insecta and the plant family Palmae. In Insects on palms, pp. 1–32. CABI, Wallingford (2001)

  3. El-Shafie, H.A.F.: Review: list of arthropod pests and their natural enemies identified worldwide on date palm, Phoenix dactylifera L. Agric. Biol. J. North Am. 3, 516–524 (2012). https://doi.org/10.5251/abjna.2012.3.12.516.524

    Article  Google Scholar 

  4. Mahmoud, E.A., Gabarty, A.: Impact of gamma radiation on male proboscis of Rhynchophorous ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). J. Entomol. Res. Soc. 19, 53–65 (2017)

    Google Scholar 

  5. Meddich, A., Boumezzough, A.: First detection of Potosia opaca larva attacks on Phoenix dactylifera and Phoenix canariensis in Morocco: focus on pests control strategies and soil quality of prospected palm groves. J. Entomol. Zool. Stud. 5, 984–991 (2017)

    Google Scholar 

  6. Joseph, S.V., Taylor, A.G.: Effect of insecticide-coated seeds on Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae) feeding damage. J. Entomol. Sci. 52, 463–467 (2017). https://doi.org/10.18474/JES17-46.1

    Article  Google Scholar 

  7. Herrero-Hernández, E., Andrades, M.S., Álvarez-Martín, A., Pose-Juan, E., Rodríguez-Cruz, M.S., Sánchez-Martín, M.J.: Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J. Hydrol. 486, 234–245 (2013). https://doi.org/10.1016/j.jhydrol.2013.01.025

    Article  Google Scholar 

  8. Palma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I.R., López de Alda, M., Barceló, D.: Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci. Total Environ. 488–489, 208–219 (2014). https://doi.org/10.1016/j.scitotenv.2014.04.088

    Article  Google Scholar 

  9. Ieromina, O., Peijnenburg, W.J.G.M., de Snoo, G.R., Vijver, M.G.: Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields. Environ. Pollut. 192, 196–203 (2014). https://doi.org/10.1016/j.envpol.2014.05.020

    Article  Google Scholar 

  10. Jovana, M., Tanja, M., Mirjana, S.: Effects of three pesticides on the earthworm Eisenia fetida (Savigny 1826) under laboratory conditions: assessment of mortality, biomass and growth inhibition. Eur. J. Soil Biol. 62, 127–131 (2014). https://doi.org/10.1016/j.ejsobi.2014.03.003

    Article  Google Scholar 

  11. Haouache, N., Boughdadi, A.: Utilisation des margines contre Aphis pomi (De Geer, 1773) (Homoptera, Aphididae). In: Neuvième Congrès de l’Association Marocaine de Protection des plantes, pp. 1–15., Rabat (2014)

  12. El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J., Hafidi, A.: Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 576, 10–21 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.032

    Article  Google Scholar 

  13. Aludatt, M.H., Alli, I., Ereifej, K., Alhamad, M., Al-Tawaha, A.R., Rababah, T.: Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 123, 117–122 (2010). https://doi.org/10.1016/j.foodchem.2010.04.011

    Article  Google Scholar 

  14. Shi, X., Tang, F., Zhou, X., Bu, X.: In vitro inhibition of polyphenol oxidase activity by insecticides and allelochemicals in Clostera anastomosis (Lepidoptera: Notodontidae) larvae and poplar trees. J. Entomol. Sci. 52, 239–247 (2017). https://doi.org/10.18474/JES16-38.1

    Article  Google Scholar 

  15. Belaqziz, M., Tan, S.P., El-Abbassi, A., Kiai, H., Hafidi, A., O’Donovan, McLoughlin, P., O., McLoughlin, P.: Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0182622

    Article  Google Scholar 

  16. Mishra, R.K., Bohra, A., Kamaal, N., Kumar, K., Gandhi, K., Saabale, P.R., Sarma, B.K., Kumar, D., Mishra, M., Srivastava, D.K., Singh, N.P.: Utilization of biopesticides as sustainable solutions for management of pests in legume crops: achievements and prospects. Egypt. J. Biol. Pest. Control. 28, 3 (2018). https://doi.org/10.1186/s41938-017-0004-1

    Article  Google Scholar 

  17. El Hassani, F.Z., Zinedine, A., Amraoui, M.B., Errachidi, F., Alaoui, S.M., Aissam, H., Merzouki, M., Benlemlih, M.: Characterization of the harmful effect of olive mill wastewater on spearmint. J. Hazard. Mater. 170, 779–785 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.033

    Article  Google Scholar 

  18. Masi, F., Bresciani, R., Munz, G., Lubello, C.: Evaporation-condensation of olive mill wastewater: evaluation of condensate treatability through SBR and constructed Wetlands. Ecol. Eng. 80, 156–161 (2015). https://doi.org/10.1016/j.ecoleng.2014.11.008

    Article  Google Scholar 

  19. Hanafi, F., Mountadar, M., Assobhei, O.: Combined electrocoagulation and fungal processes for the treatment of olive mill wastewater. In: Fourteenth International Water Technology Conference, pp. 269–281, Cairo (2010)

  20. Lafi, W.K., Shannak, B., Al-Shannag, M., Al-Anber, Z., Al-Hasan, M.: Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep. Purif. Technol. 70, 141–146 (2009). https://doi.org/10.1016/j.seppur.2009.09.008

    Article  Google Scholar 

  21. El-Abbassi, A., Khayet, M., Kiai, H., Hafidi, A., García-Payo, M.C.: Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 104, 327–332 (2013). https://doi.org/10.1016/j.seppur.2012.12.006

    Article  Google Scholar 

  22. El-Abbassi, A., Kiai, H., Hafidi, A., García-Payo, M.C., Khayet, M.: Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes. Sep. Purif. Technol. 98, 55–61 (2012). https://doi.org/10.1016/j.seppur.2012.06.026

    Article  Google Scholar 

  23. Belaqziz, M., El-Abbassi, A., Lakhal, E.K.E.K., Agrafioti, E., Galanakis, C.M.C.M.: Agronomic application of olive mill wastewater: effects on maize production and soil properties. J. Environ. Manag. 171, 158–165 (2016). https://doi.org/10.1016/j.jenvman.2016.02.006

    Article  Google Scholar 

  24. Mechri, B., Mariem, F.B., Baham, M., Elhadj, S.B., Hammami, M.: Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 40, 152–161 (2008). https://doi.org/10.1016/j.soilbio.2007.07.020

    Article  Google Scholar 

  25. El-Abbassi, A., Kiai, H., Raiti, J., Hafidi, A.: Application of ultrafiltration for olive processing wastewaters treatment. J. Clean. Prod. 65, 432–438 (2014). https://doi.org/10.1016/j.jclepro.2013.08.016

    Article  Google Scholar 

  26. Allouche, N., Fki, I., Sayadi, S.: Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 52, 267–273 (2004). https://doi.org/10.1021/jf034944u

    Article  Google Scholar 

  27. El-Abbassi, A., Kiai, H., Raiti, J., Hafidi, A.: Cloud point extraction of phenolic compounds from pretreated olive mill wastewater. J. Environ. Chem. Eng. 2, 1480–1486 (2014). https://doi.org/10.1016/j.jece.2014.06.024

    Article  Google Scholar 

  28. El-Abbassi, A., Khayet, M., Hafidi, A.: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res. 45, 4522–4530 (2011). https://doi.org/10.1016/j.watres.2011.05.044

    Article  Google Scholar 

  29. El-Abbassi, A., Kiai, H., Hafidi, A.: Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132, 406–412 (2012). https://doi.org/10.1016/j.foodchem.2011.11.013

    Article  Google Scholar 

  30. Finney, D.J.: Statisical logic in the monitoring of reactions to therapeutic drugs. Methods Inf. Med. 10, 237–245 (1971)

    Article  Google Scholar 

  31. Ehsine, M., Belkadhi, M.S., Chaieb, M.: Bio-ecologic observations on rhinoceros beetle oryctes agamemnon (Burmeister 1847) on the palm dates oasis of Rjim Maatoug in South-western Tunisia. J. Arid L. Stud. 19, 379–382 (2009)

    Google Scholar 

  32. Ehsine, M., Belkadhi, M.S., Chaieb, M.: Seasonal and nocturnal activities of the Rhinoceros Borer (Coleoptera: Scarabaeidae) in the North Saharan Oases Ecosystems. J. Insect Sci. (2014). https://doi.org/10.1093/jisesa/ieu118

    Article  Google Scholar 

  33. Abraham, V.A., Shuaibi, M.A.A., Faleiro, J.R., Abozuhairah, R.A., Vidyasagar, P.S.P.V.: An integrated management approach for red palm weevil Rhynchophorus Ferrugineus Oliv a key pest of date palm in the middle east. J. Agric. Mar. Sci. 3, 77 (1998)

    Article  Google Scholar 

  34. Kapuria, S., Dumir, P.C.: Coupled FSDT for piezothermoelectric hybrid rectangular plate. Int. J. Solids Struct. 37, 6131–6153 (2000). https://doi.org/10.1016/S0020-7683(99)00248-6

    Article  MATH  Google Scholar 

  35. Zbakh, H., El Abbassi, A.: Potential use of olive mill wastewater in the preparation of functional beverages: a review. J. Funct. Foods. 4, 53–65 (2012). https://doi.org/10.1016/j.jff.2012.01.002

    Article  Google Scholar 

  36. Kissi, M., Mountadar, M., Assobhei, O., Gargiulo, E., Palmieri, G., Giardina, P., Sannia, G.: Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 57, 221–226 (2001). https://doi.org/10.1007/s002530100712

    Article  Google Scholar 

  37. Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., Galanakis, C.M.C.M.: Olive oil production sector: environmental effects and sustainability challenges. In: Olive Mill Waste, pp. 1–28. Elsevier (2017)

  38. McCarthy, M.M.: Stretching the truth: why hippocampal neurons are so vulnerable following traumatic brain injury. Exp. Neurol. 184, 40–43 (2003). https://doi.org/10.1016/J.EXPNEUROL.2003.08.020

    Article  Google Scholar 

  39. Tian, Y.-T., Liu, Z.-W., Yao, Y., Zhang, T., Yang, Z.: Effects of alpha- and theta-cypermethrin insecticide on transient outward potassium current in rat hippocampal CA3 neurons. Pestic. Biochem. Physiol. 90, 1–7 (2008). https://doi.org/10.1016/J.PESTBP.2007.07.002

    Article  Google Scholar 

  40. Larif, M., Zarrouk, A., Soulaymani, A., Elmidaoui, A.: New innovation in order to recover the polyphenols of olive mill wastewater extracts for use as a biopesticide against the Euphyllura olivina and Aphis citricola. Res. Chem. Intermed. 39, 4303–4313 (2013). https://doi.org/10.1007/s11164-012-0947-5

    Article  Google Scholar 

  41. Danellakis, D., Ntaikou, I., Kornaros, M., Dailianis, S.: Olive oil mill wastewater toxicity in the marine environment: alterations of stress indices in tissues of mussel Mytilus galloprovincialis. Aquat. Toxicol. 101, 358–366 (2011). https://doi.org/10.1016/j.aquatox.2010.11.015

    Article  Google Scholar 

  42. Campani, T., Caliani, I., Pozzuoli, C., Romi, M., Fossi, M.C., Casini, S.: Assessment of toxicological effects of raw and bioremediated olive mill waste in the earthworm Eisenia fetida: a biomarker approach for sustainable agriculture. Appl. Soil. Ecol. 119, 18–25 (2017). https://doi.org/10.1016/J.APSOIL.2017.05.016

    Article  Google Scholar 

  43. Yousfi, K., Cert, R.M., García, J.M.: Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 223, 117–124 (2006). https://doi.org/10.1007/s00217-005-0160-5

    Article  Google Scholar 

  44. Ben Ahmed, C., Ben Rouina, B., Boukhris, M.: Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Sci. Hortic. (Amsterdam) 113, 267–277 (2007). https://doi.org/10.1016/j.scienta.2007.03.020

    Article  Google Scholar 

  45. Gómez-Rico, A., Fregapane, G., Salvador, M.D.: Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 41, 433–440 (2008). https://doi.org/10.1016/J.FOODRES.2008.02.003

    Article  Google Scholar 

  46. Butinar, B., Bučar-Miklavčič, M., Lipnik-Štangelj, M.: Antioxidants in virgin olive oils produced from two olive cultivars of Slovene Istria. Ann. Ser. Hist. Nat. 2, 201–208 (2006)

    Google Scholar 

  47. Barbera, A.C., Maucieri, C., Cavallaro, V., Ioppolo, A., Spagna, G.: Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 119, 43–53 (2013). https://doi.org/10.1016/J.AGWAT.2012.12.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelilah El Abbassi or Abdelilah Meddich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutaj, H., Boutasknit, A., Anli, M. et al. Insecticidal Effect of Olive Mill Wastewaters on Potosia opaca (Coleoptera: Scarabeidae) Larva. Waste Biomass Valor 11, 3397–3405 (2020). https://doi.org/10.1007/s12649-019-00682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00682-1

Keywords

Navigation