Skip to main content
Log in

Effects of Bacterial Bio-augmentation on the Methane Potential from Facultative Digestion of Palm Oil Mill Effluent and Empty Fruit Bunch

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The methane productivity and biodegradability of facultative single- and co-digestion samples with palm oil mill wastes was evaluated on the effect of bacterial bio-augmentation. The single- and co-digestion substrates were bio-augmented with Bacillus subtillis and a methanogenic mixed culture of anaerobic microorganisms at different loading percentage. The highest methane production was recorded at 0.95 LCH4 from co-digestion sample augmented with 10% (v/v) B. subtilis while the highest methane yield of 0.7 mLCH4/g volatile solid, attained by single-digestion of palm oil mill effluent with addition of mixed methanogens at 5% (v/v). Cumulative methane production for single-digestion increased from 0.17 LCH4 to 0.32 LCH4 in response to the bio-augmentation treatment with 5% mixed methanogens. Conversely, additional mixed methanogens to co-digestion substrate resulted 75% reduction in methane production compared to non-augmented co-digestion substrate. Addition of B. subtilis into co-digestion was more beneficial than mixed methanogens due to the cellulolytic degradation ability of B. subtilis to digest the lignocellulolytic substances in empty fruit bunch.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MPOB: Summary of the Malaysian oil palm industry 2014, pp. 1–6. Malaysian Palm Oil Board, Bandar Baru Bangi (2015)

    Google Scholar 

  2. H’ng, P.S., Chai, E.W., Chin, K.L., Peng, S.H., Wan-Azha, W.M., Halimatun, I., Go, W.Z., Khoo, P.S., Lee, C.L., Raja-Nazrin, R.A., Ashikin, S.N.: Evolution of organic matter within sixty days of composting of lignocellulosic food industry waste in Malaysia. Compos Sci Util. 26, 16–26 (2018). https://doi.org/10.1080/1065657x.2017.1342105

    Article  Google Scholar 

  3. Nurliyana, M.Y., H’ng, P.S., Rasmina, H., Kalsom, M.U., Chin, K.L., Lee, S.H., Lum, W., Khoo, G.D.: Effect of C/N ratio in methane productivity and biodegradability during facultative co-digestion of palm oil mill effluent and empty fruit bunch. Ind Crops Prod. 76, 409–415 (2015)

    Article  Google Scholar 

  4. Ahmad, A., Shah, S.M.U., Othaman, M.F., Abdullah, M.A.: Aerobic and anaerobic co-cultivation of Nannochloropsis oculata with oil palm empty fruit bunch for enhanced biomethane production and palm oil mill effluent treatment. Desalin Water Treat. 56, 2055–2065 (2015)

    Article  Google Scholar 

  5. Ahmad, A., Shah, S.M.U.: Othman MF: Enhanced palm oil mill effluent treatment and biomethane production by co-digestion of oil palm empty fruit bunches with Chlorella Sp. Can J Chem Eng. 92, 1636–1642 (2014). https://doi.org/10.1002/cjce.22029

    Article  Google Scholar 

  6. Zhang, X.Z., Zhang, Y.H.P.: One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng Life Sci. 10, 398–406 (2010)

    Article  Google Scholar 

  7. Collins, C.H., Beale, A.J. (eds.): Safety in industrial microbiology and biotechnology. Elsevier, Oxford (2015)

    Google Scholar 

  8. Bala, J.D., Lalung, J., Al-gheethi, A.A.S., Hossain, K.: Microbiota of palm oil mill wastewater in Malaysia. Trop Life Sci Res. 29, 131–163 (2018)

    Article  Google Scholar 

  9. Ohimain, E.I., Chidinma, D., Izah, S.C., Eke, R.A., Okonkwo, A.C.: Microbiology of palm oil mill effluent. J Microbiol Biotechnol Res. 2, 852–857 (2012)

    Google Scholar 

  10. Emmyrafedziawati, A.K.R.: Identification and characterisation of Bacillus subtilis as cellulase-producing bacteria. J Trop Agric Fd Sci. 41, 319–327 (2013)

    Google Scholar 

  11. Tabatabaei, M., Zakaria, M.R., Rahim, R.A., Wright, A.D.G., Shirai, Y., Abdullah, N., Sakai, K., Ikeno, S., Mori, M., Kazunori, N., Sulaiman, A., Hassan, M.A.: PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent. Electron J Biotechnol. (2009). https://doi.org/10.2225/vol12-issue3-fulltext-4

    Article  Google Scholar 

  12. Khemkhao, M., Nuntakumjorn, B., Techkarnjanaruk, S., Phalakornkule, C.: Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions. Bioresour Technol. 102, 4674–4681 (2011). https://doi.org/10.1016/j.biortech.2011.01.032

    Article  Google Scholar 

  13. Kendall, M.M., Boone, D.R.: The order methanosarcinales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds.) Prokaryotes, pp. 244–256. Springer, New York (2006)

    Chapter  Google Scholar 

  14. Bonin, A.S., Boone, D.R.: The order methanobacteriales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds.) Prokaryotes, pp. 231–243. Springer, New York (2006)

    Chapter  Google Scholar 

  15. APHA: Standard methods for the examination of water and waste water. American Public Health Association, Washington, DC (2005)

    Google Scholar 

  16. Anonymous: ASTMD-2974-14, Standard test methods for moisture, ash, and organic matter of peat and other organic soils. Anonymous, West Conshohocken (2014)

    Google Scholar 

  17. Tappi T 257 cm-12: Sampling and preparing wood for analysis. TAPPI Press, Atlanta (1993)

    Google Scholar 

  18. Tappi T222 Om-02: Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta, GA (2002)

    Google Scholar 

  19. TAPPI Standard Methods, T 203 cm99: Alpha-, beta-, and gamma-cellulose in pulp. TAPPI Standard Department, Atlanta, GA (2009)

    Google Scholar 

  20. Sun, L.: Biogas production from lignocellulosic biomasses (2015)

  21. Li, Q., Ng, W.T., Wu, J.C.: Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Fact. 13, 157 (2014)

    Article  Google Scholar 

  22. Peng, X., Börner, R.A., Nges, I.A., Liu, J.: Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol. 152, 567–571 (2014)

    Article  Google Scholar 

  23. Nielsen, H.B., Mladenovska, Z., Ahring, B.K.: Bioaugmentation of a two-stage thermophilic (68°C/55°C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnol Bioeng. 97, 1638–1643 (2007)

    Article  Google Scholar 

  24. Lebeau, T.: Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In Bioaugmentation, biostimulation and biocontrol. Springer, Berlin (2011)

    Google Scholar 

  25. Lerm, S., Kleyböcker, A., Miethling-Graff, R., Alawi, M., Kasina, M., Liebrich, M., Würdemann, H.: Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manag. 32, 389–399 (2012)

    Article  Google Scholar 

  26. Chin, K.L., H’ng, P.S., Wong, L.J., Tey, B.T., Paridah, M.T.: Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood. Appl Energy 88, 4222–4228 (2011)

    Article  Google Scholar 

  27. Yu, K.S.H., Wong, A.H.Y., Yau, K.W.Y., Wong, Y.S., Tam, N.F.Y.: Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull. 51, 1071–1077 (2005)

    Article  Google Scholar 

  28. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microb Mol Biol R 66, 506–577 (2002)

    Article  Google Scholar 

  29. Tu, M., Pan, X., Saddler, J.: Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem. 57, 7771–7778 (2009)

    Article  Google Scholar 

  30. Lu, Y.P., Yang, B., Gregg, D., Saddler, J.N., Manafield, S.D.: Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol. 98–100, 641–654 (2002)

    Article  Google Scholar 

  31. Horward, R.L., Abotsi, E., Jansen van Rensburg, E.L., Howard, S.: Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol. 2, 602–619 (2003)

    Article  Google Scholar 

  32. Biely, P.: Microbial xylanolytis systems Tibech. 3, 286–290 (1985)

    Google Scholar 

  33. Park, D., Lee, D.S., Kim, Y.M., Park, J.M.: Bioaugmentation of cynide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol. 99, 2092–2096 (2008)

    Article  Google Scholar 

  34. Simon, M., Bonner, J.S., Page, C.T., Ownsend, R.T., Mueller, D.C., Fuller, C.B., Autenrieth, R.L.: Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland. Ecol Eng. 22, 263–277 (2004)

    Article  Google Scholar 

  35. Tyagi, M., da Fonseca, M., de Carvalho, C.: Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231–241 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support given by the Ministry of Education Malaysia (MOE) under the Higher Institution Centre of Excellence (HICoE) project at the Institute of Tropical Forestry and Forest Products. The authors also sincerely thank the postgraduate students that participated in the field sampling exercise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kit Ling Chin or Paik San H’ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, K.L., Nurliyana, M.Y., H’ng, P.S. et al. Effects of Bacterial Bio-augmentation on the Methane Potential from Facultative Digestion of Palm Oil Mill Effluent and Empty Fruit Bunch. Waste Biomass Valor 11, 3407–3418 (2020). https://doi.org/10.1007/s12649-019-00680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00680-3

Keywords

Navigation