Advertisement

Influence of the Chemical Composition on the Enzymatic Hydrolysis of Hot Water and Organosolv Pretreated Sugarcane Bagasse

  • María E. VallejosEmail author
  • Marcia D. Zambon
  • María C. Area
  • Antonio A. S. Curvelo
Original Paper
  • 45 Downloads

Abstract

The aim of this study was to clarify the role of the relative amounts of hemicelluloses and lignin on the enzymatic hydrolysis of pretreated sugarcane bagasse, by using the glucans/lignin ratio and the glucans/xylans ratio as a quick estimation of the enzymes accessibility to cellulose. The samples were selected to contain about 3–20% lignin, 52–90% glucans, and 6–26% xylans (by extraction of hemicelluloses and delignification). The enzyme loads used for saccharification were 10 FPU of cellulases and 20 IU of β-glucosidases per gram of samples. Conversions of glucans to glucose were highly influenced by the chemical composition, varying between 18.1% and 83.4%. The concentration of lignin and xylans in the pretreated bagasse affects the conversion to glucose. High conversions are achieved when the substrates are highly delignified. Less delignified samples can also lead to high conversion when the percentage of xylans are also decreased. Thus, the removal of both lignin and xylans contributes to an increase in the accessibility of cellulases to cellulose.

Graphical Abstract

Keywords

Sugarcane bagasse Pretreatment Chemical composition Autohydrolysis Organosolv delignification Enzymatic hydrolysis 

Notes

Acknowledgements

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional de Misiones.

References

  1. 1.
    CONAB. Ministério da Agricultura - Acompanhamento da Safra Brasileira de Cana de Açúcar. https://www.conab.gov.br. Accessed 1 Dec 2016
  2. 2.
    Cardona, C.A., Quintero, J.A., Paz, I.C.: Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101, 4754–4766 (2010).  https://doi.org/10.1016/j.biortech.2009.10.097 CrossRefGoogle Scholar
  3. 3.
    Area, C.M., Felissia, F.E., Vallejos, M.E.: Ethanol-water fractionation of sugar cane bagasse catalyzed with acids. Cell. Chem. Technol. 43, 271 (2009)Google Scholar
  4. 4.
    Rocha, G.J.M., Gonçalves, A.R., Oliveira, B.R., Olivares, E.G., Rossell, C.E.: V: Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crops Prod. 35, 274–279 (2012).  https://doi.org/10.1016/j.indcrop.2011.07.010 CrossRefGoogle Scholar
  5. 5.
    Vallejos, M.E., Zambon, M.D., Area, M.C., Curvelo, A.A.S.: Low liquid–solid ratio (LSR) hot water pretreatment of sugarcane bagasse. Green Chem. 14, 1982 (2012).  https://doi.org/10.1039/c2gc35397k CrossRefGoogle Scholar
  6. 6.
    Somerville, C.: Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211 (2004).  https://doi.org/10.1126/science.1102765 CrossRefGoogle Scholar
  7. 7.
    Jung, Y.H., Kim, K.H.: Evaluation of the main inhibitors from lignocellulose pretreatment for enzymatic hydrolysis and yeast fermentation. BioResources 12, 9348–9356 (2017)Google Scholar
  8. 8.
    Kim, Y., Kreke, T., Ko, J.K., Ladisch, M.R.: Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol. Bioeng. 112, 677–687 (2015).  https://doi.org/10.1002/bit.25465 CrossRefGoogle Scholar
  9. 9.
    Ko, J.K., Ximenes, E., Kim, Y., Ladisch, M.R.: Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol. Bioeng. 112, 447–456 (2015).  https://doi.org/10.1002/bit.25359 CrossRefGoogle Scholar
  10. 10.
    Garrote, G., Eugenio, M.E., Díaz, M.J., Ariza, J., López, F.: Hydrothermal and pulp processing of Eucalyptus. Bioresour. Technol. 88, 61–68 (2003)CrossRefGoogle Scholar
  11. 11.
    Cunha, F.M., Kreke, T., Badino, A.C., Farinas, C.S., Ximenes, E., Ladisch, M.R.: Liquefaction of sugarcane bagasse for enzyme production. Bioresour. Technol. 172, 249–252 (2014).  https://doi.org/10.1016/j.biortech.2014.09.025 CrossRefGoogle Scholar
  12. 12.
    Sasaki, M., Adschiri, T., Arai, K.: Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour. Technol. 86, 301–304 (2003)CrossRefGoogle Scholar
  13. 13.
    Mcdonough, T.J.: The chemistry of organosolv delignifiation. Tappi J. 76, 186–193 (1993)Google Scholar
  14. 14.
    Caparrós, S., Ariza, J., Garrote, G., López, F., Díaz, M.J.: Optimization of Paulownia fortunei L. Autohydrolysis—organosolv pulping as a source of xylooligomers and cellulose pulp. Ind. Eng. Chem. Res. 46, 623–631 (2007).  https://doi.org/10.1021/ie060561k CrossRefGoogle Scholar
  15. 15.
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010).  https://doi.org/10.1016/j.biortech.2010.01.088 CrossRefGoogle Scholar
  16. 16.
    Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y.: Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959–1966 (2005).  https://doi.org/10.1016/j.biortech.2005.01.010 CrossRefGoogle Scholar
  17. 17.
    Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefining. 2, 26–40 (2008).  https://doi.org/10.1002/bbb.49 CrossRefGoogle Scholar
  18. 18.
    Farinas, C.S.: Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sustain. Energy Rev. 52, 179–188 (2015).  https://doi.org/10.1016/j.rser.2015.07.092 CrossRefGoogle Scholar
  19. 19.
    Borges, D.G., Baraldo Junior, A., Farinas, C.S., de Lima Camargo Giordano, R., Tardioli, P.W.: Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresour. Technol. 167, 206–213 (2014).  https://doi.org/10.1016/j.biortech.2014.06.021 CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Wu, S.: Generation of lignin and enzymatically digestible cellulose from ethanol-based organosolv pretreatment of sugarcane bagasse. Cellulose. 22, 2409–2418 (2015).  https://doi.org/10.1007/s10570-015-0678-z CrossRefGoogle Scholar
  21. 21.
    Mesa, L., González, E., Cara, C., González, M., Castro, E., Mussatto, S.I.: The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem. Eng. J. 168, 1157–1162 (2011).  https://doi.org/10.1016/j.cej.2011.02.003 CrossRefGoogle Scholar
  22. 22.
    Yoshimura, T., Inoue, S.: Combining delignification and hot compressed water pretreatments for enzymatic saccharification. J. Japan Inst. Energy. 91, 915–922 (2012)CrossRefGoogle Scholar
  23. 23.
    Maache-Rezzoug, Z., Pierre, G., Nouviaire, A., Maugard, T., Rezzoug, S.A.: Optimizing thermomechanical pretreatment conditions to enhance enzymatic hydrolysis of wheat straw by response surface methodology. Biomass and Bioenergy. 35, 3129–3138 (2011).  https://doi.org/10.1016/j.biombioe.2011.04.012 CrossRefGoogle Scholar
  24. 24.
    Karunanithy, C., Muthukumarappan, K.: Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis. Biochem. Eng. J. 54, 71–82 (2011).  https://doi.org/10.1016/j.bej.2011.02.001 CrossRefGoogle Scholar
  25. 25.
    Chen, Y., Stevens, M.A., Zhu, Y., Holmes, J., Xu, H.: Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol. Biofuels. 6, 8 (2013).  https://doi.org/10.1186/1754-6834-6-8 CrossRefGoogle Scholar
  26. 26.
    Tan, H.T., Lee, K.T.: Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem. Eng. J. 183, 448–458 (2012).  https://doi.org/10.1016/j.cej.2011.12.086 CrossRefGoogle Scholar
  27. 27.
    Yang, B., Wyman, C.E.: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–98 (2004).  https://doi.org/10.1002/bit.20043 CrossRefGoogle Scholar
  28. 28.
    Fu, D., Mazza, G., Tamaki, Y.: Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J. Agric. Food Chem. 58, 2915–2922 (2010).  https://doi.org/10.1021/jf903616y CrossRefGoogle Scholar
  29. 29.
    Ishizawa, C.I., Davis, M.F., Schell, D.F., Johnson, D.K.: Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 55, 2575–2581 (2007).  https://doi.org/10.1021/jf062131a CrossRefGoogle Scholar
  30. 30.
    Kim, S., Holtzapple, M.T.: Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol. 97, 583–591 (2006).  https://doi.org/10.1016/j.biortech.2005.03.040 CrossRefGoogle Scholar
  31. 31.
    Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S.: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102, 1368–1376 (2009).  https://doi.org/10.1002/bit.22179 CrossRefGoogle Scholar
  32. 32.
    Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., Liu, Y.: Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 144, 396–400 (2013).  https://doi.org/10.1016/j.biortech.2013.06.036 CrossRefGoogle Scholar
  33. 33.
    Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., Tan, X.: Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour. Technol. 129, 592–598 (2013).  https://doi.org/10.1016/j.biortech.2012.11.099 CrossRefGoogle Scholar
  34. 34.
    Guilherme, A.A., Dantas, P.V.F., Santos, E.S., Fernandes, F.A.N., Macedo, G.R.: Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian J. Chem. Eng. 32, 23–33 (2015).  https://doi.org/10.1590/0104-6632.20150321s00003146 CrossRefGoogle Scholar
  35. 35.
    Vallejos, M.E., Zambon, M.D., Area, M.C., Curvelo, A.A.D.S.: Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Ind. Crops Prod. 65, 349 (2015).  https://doi.org/10.1016/j.indcrop.2014.11.018 CrossRefGoogle Scholar
  36. 36.
    Santos, J.R.A., Lucena, M.S., Gusmão, N.B., Gouveia, E.R.: Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Ind. Crops Prod. 36, 584–588 (2012).  https://doi.org/10.1016/j.indcrop.2011.10.002 CrossRefGoogle Scholar
  37. 37.
    Wanderley, M.C., de A., Martín, Rocha, C., G.J. de M., Gouveia: E.R.: Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour. Technol. 128, 448–453 (2013).  https://doi.org/10.1016/j.biortech.2012.10.131 CrossRefGoogle Scholar
  38. 38.
    Rollin, J.A., Zhu, Z., Sathitsuksanoh, N., Zhang, Y.-H.P.: Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol. Bioeng. 108, 22–30 (2011).  https://doi.org/10.1002/bit.22919 CrossRefGoogle Scholar
  39. 39.
    Zhu, L., O’Dwyer, J.P., Chang, V.S., Granda, C.B., Holtzapple, M.T.: Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99, 3817–3828 (2008).  https://doi.org/10.1016/j.biortech.2007.07.033 CrossRefGoogle Scholar
  40. 40.
    Kumar, R., Wyman, C.E.: Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol. Prog. 25, 807–819 (2009).  https://doi.org/10.1002/btpr.153 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Celulosa y Papel - Instituto de Materiales de MisionesIMAM (UNaM- CONICET)PosadasArgentina
  2. 2.Grupo de Físico-química Orgânica, Departamento de Físico-química, Instituto de Química de São CarlosUniversidade de São PauloSao CarlosBrazil

Personalised recommendations