Abstract
As yet, the full potential of raw oil palm frond leaves (OPFL) is not fully explored. This study therefore, evaluated OPFL as cheap and sustainable growth substrate for two novel fungi species to produce cellulase and xylanase under solid-state fermentation (SSF). 18S rRNA, phylogeny and BIOLOG® analyses identified the cellulase and xylanase-producing fungal strains as Trichoderma asperellum UC1 and Rhizopus oryzae UC2. In addition to being more robust and fast-growing, strain UC2 demonstrated rapid spore production and exhibited sustained production of cellulase and xylanase as compared to the fungal strain UC1. Maximum endoglucanase, exoglucanase, β-glucosidase and xylanase activity for strain UC1 were recorded as 59.64 U/g, 9.58 U/g, 118.1 U/g and 175.91 U/g, respectively, while UC2 gave the corresponding enzyme activity of 41.62 U/g, 7.65 U/g, 113.07 U/g and 162.68 U/g. It was apparent that strains UC1 and UC2 grew well under SSF of raw OPFL, envisaging the feasibility of this form of oil palm biomass as growth substrate for fungi, yielding satisfactorily high titers of cellulase and xylanase. Noteworthily, the approach adopted by this study offers an alternative avenue to valorizing agriculture biomass, in conjunction to sustainably produce cellulose-acting enzymes to catalyse biofuel and platform chemical productions.
Graphical Abstract

This is a preview of subscription content, access via your institution.






References
Rozali, N.L., Yarmo, M.A., Idris, A.S., Kushairi, A., Ramli, U.S.: Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant OMICS. 10(2), 45–52 (2017). https://doi.org/10.21475/poj.10.02.17.pne364
Loh, S.K., Choo, Y.M.: Prospect, Challenges and Opportunities on Biofuels in Malaysia, pp. 3–14. Springer, Boston (2013)
Onoja, E., Attan, N., Chandren, S., Ilyana, F., Razak, A., Abdul, S., Arafat, N., Abdul, R.: Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy. Malayas. J. Fundam. Appl. Sci. 13(4), 623–631 (2017)
Loh, S.K.: The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 141, 285–298 (2017). https://doi.org/10.1016/j.enconman.2016.08.081
Agensi Inovasi Malaysia.: National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry. Agensi Inovasi Malaysia (AIM). (2013)
Ezeilo, U.R., Zakaria, I.I., Huyop, F., Wahab, R.A.: Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol. Biotechnol. Equip. 31, 1–16 (2017). https://doi.org/10.1080/13102818.2017.1330124
Tan, H., Miao, R., Liu, T., Yang, L., Yang, Y., Chen, C., Lei, J., Li, Y., He, J., Sun, Q., Peng, W., Gan, B., Huang, Z.: A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb. Biotechnol. 11(2), 381–398 (2018). https://doi.org/10.1111/1751-7915.13034
Sundram, S.: The effects of trichoderma in surface mulches supplemented with conidial drenches in the disease development of Ganoderma basal stem rot in oil palm. J. Oil Palm Res. 25(DEC), 314–325 (2013)
Ang, S.K., Shaza, E.M., Adibah, Y.A., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48(9), 1293–1302 (2013). https://doi.org/10.1016/j.procbio.2013.06.019
Awalludin, M.F., Sulaiman, O., Hashim, R., Nadhari, W.N.A.W.: An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew. Sustain. Energy Rev. 50, 1469–1484 (2015). https://doi.org/10.1016/j.rser.2015.05.085
Onoja, E., Chandren, S., Razak, A., Mahat, F.I., Wahab, N.A.: Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0258-1
Ehsan, S., Wahid, M.A.: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016). https://doi.org/10.1016/j.rser.2015.12.112
Sheldon, R.A.: Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014). https://doi.org/10.1039/c3gc41935e
Naude, A., Nicol, W.: Fumaric acid fermentation with immobilised Rhizopus oryzae: quantifying time-dependent variations in catabolic flux. Process Biochem. 56, 8–20 (2017). https://doi.org/10.1016/J.PROCBIO.2017.02.027
Wu, X., Liu, Q., Deng, Y., Chen, X., Zheng, Z., Jiang, S., Li, X.: Production of fumaric acid by bioconversion of corncob hydrolytes using an improved Rhizopus oryzae strain. Appl. Biochem. Biotechnol. 184(2), 553–569 (2018). https://doi.org/10.1007/s12010-017-2554-9
Panda, S.K., Mishra, S.S., Kayitesi, E., Ray, R.C.: Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environ. Res. 146, 161–172 (2016)
Kanta Sharma, H., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0059-y
Zhou, S., Raouche, S., Grisel, S., Navarro, D., Sigoillot, J.-C., Herpoël-Gimbert, I.: Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb. Biotechnol. 8(6), 940–949 (2015). https://doi.org/10.1111/1751-7915.12307
Sharma, R.K., Arora, D.S.: Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit. Rev. Microbiol. 41(1), 52–60 (2015). https://doi.org/10.3109/1040841X.2013.791247
Elias, N., Chandren, S., Attan, N., Mahat, N.A., Ilyana, F., Razak, A., Jamalis, J., Wahab, R.A.: Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polymer. 176, 281–292 (2017). https://doi.org/10.1016/j.carbpol.2017.08.097
Druzhinina, I.S., Kubicek, C.P.: Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 10(6), 1485–1499 (2017). https://doi.org/10.1111/1751-7915.12726
Kamsani, N., Salleh, M.M., Yahya, A., Chong, C.S.: Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation. Waste Biomass Valoriz. 7, 357–371 (2016). doi:https://doi.org/10.1007/s12649-015-9453-5
Rangaswami, G.: An agar block technique for isolating soil micro organisms with special reference to Pythiaceous fungi. Sci. Cult. 24, 85–85 (1958)
Hubballi, M., Nakkeeran, S., Raguchander, T., Rajendran, L., Renukadevi, P., Samiyappan, R.: First report of leaf blight of noni caused by Alternaria alternata (Fr.) Keissler. J. Gen. Plant Pathol. 76, 284–286 (2010). https://doi.org/10.1007/s10327-010-0240-7
Lusta, K.A., Kochkina, G.A., Sul, I.W., Chung, I.K., Park, H.S., Shin, D.: An integrated approach to taxonomical identification of the novel filamentous fungus strain producing extracellular lipases: morphological, physiological and DNA fingerprinting techniques. Fungal Divers. 12, 135–149 (2003)
Glass, N.L., Donaldson, G.C.: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61(4), 1323–1330 (1995)
Bochner, B., Ralha, M.C.: United States Patent [191]. (1997)
Mandels, M., Weber, J.: The production of cellulases. Adv Chem. 95, 391–414. (1969)
Samira, M., Mohammad, R., Gholamreza, G.: Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiol. J. 1, 8–16(2011)
Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A Rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008). https://doi.org/10.1007/s00284-008-9276-8
Melgar, G.Z., Souza de Assis, F.V., da Rocha, L.C., Fanti, S.C., Sette, L.D., Porto, A.L.M.: Growth curves of filamentous fungi for utilization in biocatalytic reduction of cyclohexanones. Global J. Sci. Front. Res. Chem. 13(5), 12–19 (2013)
Xu, X., Lin, M., Zang, Q., Shi, S.: Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Biores. Technol. 247, 88–95 (2018). https://doi.org/10.1016/J.BIORTECH.2017.08.192
Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030
Sing, N.N., Zulkharnain, A., Roslan, H.A., Assim, Z., Husaini, A.: Bioremediation of PCP by trichoderma and cunninghamella strains isolated from sawdust. Braz. Arch. Biol. Technol. 57657(6), 811–820 (2014). https://doi.org/10.1590/S1516-8913201402852
De Los Santos-Villalobos, S., Hernández-Rodríguez, L.E., Villaseñor-Ortega, F., Peña-Cabriales, J.J.: Production of Trichoderma asperellum T8a spores by a “home-made” solid-state fermentation of mango industrial wastes. BioResources 7(4), 4938–4951 (2012)
Hunter, B.B., Barnett, H.L.: Growth and sporulation of species and isolates of Cylindrocladium in culture. Mycologia 70(3), 614–614 (1978). https://doi.org/10.2307/3759399
Bottone, E.J., Weitzman, I., Hanna, B.A.: Rhizopus rhizopodiformis. Emerg. Etiol. Agent Mucormycosis 9(4), 530–537 (1979)
Jennessen, J., Rer, J.S., Olsson, J., Samson, R.A., Dijksterhuis, J., Hawksworth, D.L.: Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol. Res. 112, 547–563 (2008). https://doi.org/10.1016/j.mycres.2007.11.006
Harvey, M.L., Dadour, I.R., Gaudieri, S.: Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic. Sci. Int. 131(2–3), 134–139 (2003). https://doi.org/10.1016/S0379-0738(02)00431-0
Góes-Neto, A., Diniz, M.V.C., Carvalho, D.S., Bomfim, G.C., Duarte, A.A., Brzozowski, J.A., Petit Lobão, T.C., Pinho, S.T.R., El-Hani, C.N., Andrade, R.F.S.: Comparison of complex networks and tree-based methods of phylogenetic analysis and proposal of a bootstrap method. PeerJ. 6, e4349–e4349 (2018). https://doi.org/10.7717/peerj.4349
Ajijolakewu, K.A., Leh, C.P., Nadiah, W., Abdullah, W., Lee, C.K.: Assessment of the effect of easily-metabolised carbon supplements on xylanase production by newly isolated Trichoderma asperellum USM SD4 cultivated on oil palm empty fruit bunches. BioResources 11(4), 9611–9627 (2016)
Al-Sadi, A.M., Al-Oweisi, F.A., Edwards, S.G., Al-Nadabi, H., Al-Fahdi, A.M.: Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil. BMC Microbiol. 15(1), 147–147 (2015). https://doi.org/10.1186/s12866-015-0483-8
Rahbek, L.B., Kamp, B.P., Lange, L.: Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genomics Biol. 4, 1–1 (2015). https://doi.org/10.4172/2165-8056.1000116
Chowdhary, A., Kathuria, S., Singh, P.K., Sharma, B., Dolatabadi, S., Hagen, F., Meis, J.F.: Molecular characterization and in vitro antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses 57(s3), 97–107 (2014). https://doi.org/10.1111/myc.12234
Ogawa, Y., Tokumasu, S., Tubaki, K.: An original habitat of tempeh molds. Mycoscience 45(4), 271–276 (2004). https://doi.org/10.1007/S10267-004-0180-1
Kwon, J.-H., Kang, D.-W., Yoon, H.-S., Kwak, Y.-S., Kim, J.: Rhizopus fruit rot caused by Rhizopus oryzae on strawberry. J. Agric. Life Sci. J. Agric. Life Sci. 48(484), 27–3427 (2014). https://doi.org/10.14397/jals.2014.48.4.27
Wang, Q., Lin, H., Shen, Q., Fan, X., Bai, N., Zhao, Y.: Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1. PLoS ONE 10(3), e0119237–e0119237 (2015). https://doi.org/10.1371/journal.pone.0119237
Srigyan, D., Behera, H.S., Satpathy, G., Ahmed, N.H., Sharma, N., Tandon, R., Xess, I., Titiyal, J.S.: Molecular characterisation of fungi from mycotic keratitis and invasive infections and comparison with conventional methods. J. Clin. Diagn. Res. (2018). https://doi.org/10.7860/JCDR/2018/34188.11301
Amore, A., Giacobbe, S., Faraco, V.: Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14(4), 230–249 (2013). https://doi.org/10.2174/1389202911314040002
Houfani, A.A., Větrovsky, T., Baldrian, P., Benallaoua, S.: Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World J. Microbiol. Biotechnol. 33(2), 1–14 (2017). https://doi.org/10.1007/s11274-016-2198-x
Sarsaiya, S., Awasthi, S.K., Awasthi, M.K., Awasthi, A.K., Mishra, S., Chen, J.: The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Biores. Technol. 251, 411–415 (2017). https://doi.org/10.1016/j.biortech.2017.12.011
Florencio, C., Couri, S., Farinas, C.S.: Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. (2012). https://doi.org/10.1155/2012/793708
Pointing, S.B.: Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 2(March), 17–33 (1999). https://doi.org/10.1364/AO.49.002813
Palaniswamy, M., Vaikuntavasan, B., Ramaswamy, P.: Isolation, identification and screening of potential xylanolytic enzyme from litter degrading fungi. Afr. J. Biotechnol. 7(11), 1978–1982 (2008)
Seiboth, B., Herold, S., Kubicek, C.P.: Metabolic Engineering of Inducer Formation for Cellulase and Hemicellulase Gene Expression in Trichoderma reesei, pp. 367–390. Springer, Dordrecht (2012)
Sternberg, D., Vuayakumar, P., Reese, E.T.: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23(2), 139–147 (1977). https://doi.org/10.1139/m77-020
Acharya, S., Chaudhary, A.: Bioprospecting thermophiles for cellulase production: a review. Braz. J. Microbiol. 43(3), 844–856 (2012). https://doi.org/10.1590/S1517-83822012000300001
Riquelme, M., Aguirre, J., Bartnicki-García, S., Braus, G.H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R.R., Takeshita, N., Fischer, R.: Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 82(2), e00068–e00017 (2018). https://doi.org/10.1128/MMBR.00068-17
Sridevi, A., Ramanjaneyulu, G., Suvarnalatha Devi, P.: Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3 Biotech. 7(4), 266–266 (2017). https://doi.org/10.1007/s13205-017-0898-z
Sridevi, B., Charya, M.A.S.: Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr. J. Biotechnol. 10(22), 4624–4630 (2011). https://doi.org/10.5897/AJB10.2108
Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y.: Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Biores. Technol. 99(16), 7623–7629 (2008). https://doi.org/10.1016/j.biortech.2008.02.005
Cripwell, R., Favaro, L., Rose, S.H., Basaglia, M., Cagnin, L., Casella, S., van Zyl, W.: Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl. Energy 160, 610–617 (2015). https://doi.org/10.1016/J.APENERGY.2015.09.062
Ang, S.K., Yahya, A., Aziz, S.A., Salleh, M.: Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves isolation. Prep. Biochem. Biotechnol. 45, 279–305 (2015). https://doi.org/10.1080/10826068.2014.923443
Roslan, A.M., Hassan, M.A., Abd-Azizz, S., Yee, P.L.: Effect of palm oil mill effluent supplementation on cellulase production from rice straw by local fungal isolates. Int. J. Agric. Res. 4, 185–192 (2009)
Maceno, M.A.C.a., Vandenberghe, L.P.d.S., Woiciechowski, A.L., Soccol, C.R., Spier, M.R.: Production of cellulases by Phanerochaete sp. using empty fruit bunches of palm (EFB) as substrate: optimization and scale-up of process in bubble column and stirred tank bioreactors (STR). Waste Biomass Valoriz. 7, 1327–1337 (2016). https://doi.org/10.1007/s12649-016-9503-7
Marx, I.J., Van Wyk, N., Smit, S., Jacobson, D., Viljoen-Bloom, M., Volschenk, H.: Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol. Biofuels 6, 172–172 (2013)
Raghuwanshi, S., Deswal, D., Karp, M., Kuhad, R.C.: Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel 124, 183–189 (2014). https://doi.org/10.1016/J.FUEL.2014.01.107
Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34(1), 1160–1167 (2011). https://doi.org/10.1016/J.INDCROP.2011.04.001
Salgado, J.M., Abrunhosa, L., Venâncio, A., Domínguez, J.M., Belo, I.: Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J. Agric. Food Chem. 63(42), 9306–9314 (2015). https://doi.org/10.1021/acs.jafc.5b02131
Kumar, J., Reetu, S.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech (2015). https://doi.org/10.1007/s13205-014-0246-5
Oberoi, H.S., Chavan, Y., Bansal, S., Dhillon, G.S.: Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technol. 3(4), 528–536 (2010). https://doi.org/10.1007/s11947-008-0092-8
Acknowledgements
The authors would like to acknowledge the financial support by the Research University Grant (GUP) from Universiti Teknologi Malaysia, Johor Bahru [grant number Q.J130000.2526.13H09].
Author information
Authors and Affiliations
Contributions
RAW and URE conceived the main conceptual ideas and proof outline. RAW is the main supervisor and, CTL, FH, NAM and IIZ helped co-supervise the project. URE and RAW wrote the manuscript with input from all authors. All authors provided critical feedback and helped shape the analysis and manuscript.
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ezeilo, U.R., Wahab, R.A., Tin, L.C. et al. Fungal-Assisted Valorization of Raw Oil Palm Leaves for Production of Cellulase and Xylanase in Solid State Fermentation Media. Waste Biomass Valor 11, 3133–3149 (2020). https://doi.org/10.1007/s12649-019-00653-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-019-00653-6