Skip to main content

Advertisement

Log in

High Titer Ethanol Production from Combined Alkaline/Alkaline Hydrogen Peroxide Pretreated Bamboo at High Solid Loading

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis and fermentation at high solid loading is generally required for the production of high titer ethanol from lignocellulosic biomass at a relatively low cost. In this paper, bamboo pretreated by alkaline and alkaline hydrogen peroxide was subjected to downstream enzymatic hydrolysis and ethanol fermentation at high solid loading for the production of high titer ethanol. The effects of solid loading (5–25% w/v) and enzyme dosage (10–50 mg protein/g glucan) on sugar conversion and ethanol production during separate enzymatic hydrolysis and fermentation (SHF) and simultaneous enzymatic saccharification and co-fermentation (SSCF) processes were investigated. During the fermentation process, the pentose-hexose fermenting Saccharomyces cerevisiae LF1 strain was used. The results showed that the increase of solid loading decreased sugar conversion during enzymatic hydrolysis. At relatively high solid loadings (≥ 20% w/v), SSCF resulted in higher sugar conversion and final ethanol titer compared to SHF. With this proposed process, an ethanol concentration of 68.2 g/L, along with approximately 83.5% of glucan and 73.8% of xylan conversions, could be reached through SSCF at 20% solid loading with an enzyme dosage of only 20 mg protein/g glucan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kumar, M.N., Ravikumar, R., Thenmozhi, S., Kumar, M.R., Shankar, M.K.: Choice of pretreatment technology for sustainable production of bioethanol from lignocellulosic biomass: bottle necks and recommendations. Waste Biomass Valoriz. 8, 1–17 (2018)

    Google Scholar 

  2. Banerjee, G., Scott-Craig, J.S., Walton, J.D.: Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res. 3, 82–92 (2010)

    Google Scholar 

  3. Littlewood, J., Wang, L., Turnbull, C., Murphy, R.J.: Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 1 (2013)

    Google Scholar 

  4. Scurlock, J.M.O., Dayton, D.C., Hames, B.: Bamboo: an overlooked biomass resource? Biomass Bioenergy 19, 229–244 (2000)

    Google Scholar 

  5. Mou, H., Wu, S.: Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 24, 85–94 (2017)

    Google Scholar 

  6. Curreli, N., Fadda, M.B., Rescigno, A., Rinaldi, A.C., Soddu, G., Sollai, F., Vaccargiu, S., Sanjust, E., Rinaldi, A.: Mild alkaline/oxidative pretreatment of wheat straw. Process Biochem. 32, 665–670 (1997)

    Google Scholar 

  7. Kamsani, N., Salleh, M.M., Yahya, A., Chong, C.S.: Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation. Waste Biomass Valoriz. 7, 357–371 (2016)

    Google Scholar 

  8. Yuan, Z., Wen, Y., Kapu, N.S.: Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour. Technol. 247, 242–249 (2018)

    Google Scholar 

  9. Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D.: Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16 (2011)

    Google Scholar 

  10. Dien, B.S., Sarath, G., Pedersen, J.F., Sattler, S.E., Chen, H., Funnell-Harris, D.L., et al.: Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res. 2, 153–164 (2009)

    Google Scholar 

  11. Martínez-Patiño, J.C., Ruiz, E., Romero, I., Cara, C., López-Linares, J.C., Castro, E.: Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production. Bioresour. Technol. 239, 326–335 (2017)

    Google Scholar 

  12. Talukder, M.M.R., Goh, H.Y., Puah, S.M.: Interaction of silica with cellulase and minimization of its inhibitory effect on cellulose hydrolysis. Biochem. Eng. J. 118, 91–96 (2017)

    Google Scholar 

  13. Das, S., Berke-Schlessel, D., Ji, H.F., McDonough, J., Wei, Y.: Enzymatic hydrolysis of biomass with recyclable use of cellobiase enzyme immobilized in sol–gel routed mesoporous silica. J. Mol. Catal. B: Enzymatic 70, 49–54 (2011)

    Google Scholar 

  14. Yuan, Z., Wen, Y.: Evaluation of an integrated process to fully utilize bamboo biomass during the production of bioethanol. Bioresour. Technol. 236, 202–211 (2017)

    Google Scholar 

  15. Vaughn, S.F., Berhow, M.A.: Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind. Crops Prod 21, 193–202 (2005)

    Google Scholar 

  16. Mamaeva, V., Sahlgren, C., Lindén, M.: Mesoporous silica nanoparticles in medicine-recent advances. Adv. Drug Deliv. Rev. 65, 689–702 (2013)

    Google Scholar 

  17. Yuan, Z., Chang, X.F., Kapu, N.S., Beatson, R., Martinez, D.M.: An eco-friendly scheme to eliminate silica problems during bamboo biomass fractionation. Nordic Pulp Pap. Res. J. 32, 4–13 (2017)

    Google Scholar 

  18. Galbe, M., Sassner, P., Wingren, A., Zacchi, G.: Process engineering economics of bioethanol production. In: Olsson, L. (ed.) Biofuels, pp. 303–327. Berlin, Springer (2007)

    Google Scholar 

  19. Jin, M., Sarks, C., Bals, B.D., Posawatz, N., Gunawan, C., Dale, B.E., Balan, V.: Toward high solid loading process for lignocellulosic biofuel production at a low cost. Biotechnol. Bioeng. 114, 980–989 (2017)

    Google Scholar 

  20. Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H.: The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 68, 1052–1060 (2009)

    Google Scholar 

  21. Kristensen, J.B., Felby, C., Jørgensen, H.: Yield-determining factors in high-solid enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2, 11 (2009)

    Google Scholar 

  22. Qiu, J., Ma, L., Shen, F., Yang, G., Zhang, Y., Deng, S., et al.: Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Bioresour. Technol. 238, 174–181 (2017)

    Google Scholar 

  23. Isci, A., Murphy, P.T., Anex, R.P., Moore, K.J.: A rapid simultaneous saccharification and fermentation (SSF) technique to determine ethanol yields. BioEnergy Res. 1, 163–169 (2008)

    Google Scholar 

  24. Cara, C., Moya, M., Ballesteros, I., Negro, M.J., González, A., Ruiz, E.: Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 42, 1003–1009 (2007)

    Google Scholar 

  25. Hodge, D.B., Karim, M.N., Schell, D.J., McMillan, J.D.: Soluble and insoluble solid contributions to high-solid enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99, 8940–8948 (2008)

    Google Scholar 

  26. Ramachandriya, K.D., Wilkins, M., Atiyeh, H.K., Dunfor, N.T., Hiziroglu, S.: Effect of high dry solid loading on enzymatic hydrolysis of acid bisulfite pretreated Eastern redcedar. Bioresour. Technol. 147, 168–176 (2013)

    Google Scholar 

  27. da Silva Martins, L.H., Rabelo, S.C., da Costa, A.C.: Effects of the pretreatment method on high solid enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour. Technol. 191, 312–321 (2015)

    Google Scholar 

  28. Liu, Y., Xu, J., Zhang, Y., Yuan, Z., Xie, J.: Optimization of high solid fed-batch saccharification of sugarcane bagasse based on system viscosity changes. J. Biotechnol. 211, 5–9 (2015)

    Google Scholar 

  29. Zhong, C., Lau, M.W., Balan, V., Dale, B.E., Yuan, Y.J.: Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl. Microbiol. Biotechnol. 84, 667–676 (2009)

    Google Scholar 

  30. Zhu, J.Y., Gleisner, R., Scott, C.T., Luo, X.L., Tian, S.: High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solid: a comparison between SPORL and dilute acid pretreatments. Bioresour. Technol. 102, 8921–8929 (2011)

    Google Scholar 

  31. Nguyen, T.Y., Cai, C.M., Kumar, R., Wyman, C.E.: Overcoming factors limiting high-solid fermentation of lignocellulosic biomass to ethanol. Proc. Natl. Acad. Sci. USA. 114(44), 11673–11678 (2017)

    Google Scholar 

  32. Sluiter, A., Hames, B., Ruiz, R., Scarlat, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. Version 2012. National Renewable Energy Laboratory, Golden (2012)

    Google Scholar 

  33. Li, H., Shen, Y., Wu, M., Hou, J., Jiao, C., Li, Z., Liu, X., Bao, X.: Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production. Bioresour. Bioprocess 3, 51 (2016)

    Google Scholar 

  34. Zhu, Y., Malten, M., Torry-Smith, M., McMillan, J.D., Stickel, J.J.: Calculating sugar yields in high solid hydrolysis of biomass. Bioresour. Technol. 102, 2897–2903 (2011)

    Google Scholar 

  35. Gall, D.L., Ralph, J., Donohue, T.J., Noguera, D.R.: Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr. Opin. Biotechnol. 45, 120–126 (2017)

    Google Scholar 

  36. Luo, H., Klein, I.M., Jiang, Y., Zhu, H., Liu, B., Kenttämaa, H.I., Abu-Omar, M.M.: Total utilization of miscanthus biomass, lignin and carbohydrates, using earth abundant nickel catalyst. ACS Sustain. Chem. Eng. 4, 2316–2322 (2016)

    Google Scholar 

  37. Zhao, S., Abu-Omar, M.M.: Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromolecul. 16, 2025–2031 (2015)

    Google Scholar 

  38. Qing, Q., Wyman, C.E.: Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol. Biofuels 4, 18–29 (2011)

    Google Scholar 

  39. Sassner, P., Galbe, M., Zacchi, G.: Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32, 422–430 (2008)

    Google Scholar 

  40. Berlin, A., Maximenko, V., Gilkes, N., Saddler, J.: Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97, 287–296 (2007)

    Google Scholar 

  41. Modenbach, A.A., Nokes, S.E.: Enzymatic hydrolysis of biomass at high-solid loadings–a review. Biomass Bioenergy 56, 526–544 (2013)

    Google Scholar 

  42. Kim, Y., Hendrickson, R., Mosier, N.S., Ladisch, M.R., Bals, B., Balan, V., Dale, B.E.: Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains at high-solid loadings. Bioresour. Technol. 99, 5206–5215 (2008)

    Google Scholar 

  43. Charoenchai, C., Fleet, G.H., Henschke, P.A.: Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. Am. J. Enol. Vitic 49, 283–288 (1998)

    Google Scholar 

  44. Caspeta, L., Caro-Bermúdez, M.A., Ponce-Noyola, T., Martinez, A.: Enzymatic hydrolysis at high-solid loadings for the conversion of agave bagasse to fuel ethanol. Appl. Energy 113, 277–286 (2014)

    Google Scholar 

  45. Kumar, A.G., Nagesh, N., Prabhakar, T.G., Sekaran, G.: Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour. Technol. 99, 2364–2372 (2008)

    Google Scholar 

  46. Tomás-Pejó, E., Oliva, J.M., Ballesteros, M., Olsson, L.: Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 100, 1122–1131 (2008)

    Google Scholar 

  47. Romaní, A., Garrote, G., Parajó, J.C.: Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94, 305–312 (2012)

    Google Scholar 

  48. Sasaki, K., Tsuge, Y., Sasaki, D., Teramura, H., Inokuma, K., Hasunuma, T., Ogino, C., Kondo, A.: Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 185, 263–268 (2015)

    Google Scholar 

  49. De Assis, T., Huang, S., Driemeier, C.E., Donohoe, B.S., Kim, C., Kim, S.H., Gonzalez, R., Jameel, H., Park, S.: Toward an understanding of the increase in enzymatic hydrolysis by mechanical refining. Biotechnol. Biofuels 11, 289 (2018)

    Google Scholar 

  50. Olsson, L., Soerensen, H.R., Dam, B.P., Christensen, H., Krogh, K.M., Meyer, A.S.: Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 129, 117–129 (2006)

    Google Scholar 

  51. Pimentel, D.: The limitations of biomass energy. In: Meyers, R. (ed.) Encyclopedia of Physical Science and Technology, vol. 2, 3rd edn., pp. 159–171. Academic, San Diego (2001)

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support from National Natural Science Foundation of China (Grant No. 21506105). The authors are grateful to Novozymes for kindly providing the enzyme preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wei, W., Li, G. et al. High Titer Ethanol Production from Combined Alkaline/Alkaline Hydrogen Peroxide Pretreated Bamboo at High Solid Loading. Waste Biomass Valor 11, 2795–2805 (2020). https://doi.org/10.1007/s12649-019-00638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00638-5

Keywords