Skip to main content

Advertisement

Log in

Strategy for the Design of Waste to Energy Processes Based on Physicochemical Characterisation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Energy recovery from wastes is needed for cost-effective and sustainable management. For a given waste, the definition of suitable thermochemical conversion process schemes relies on devising a strategy based on several variables among which feedstock characterization is crucial. Depending on the properties of the fuel, the available waste resource may not be suitable for a specific application, for technical and sometimes for environmental reasons (Virmond et al. in Braz J Chem Eng 30:197–230, 2013). Within this framework, agro-industrial wastes (grape stem, beer bagasse and orange juice residues) were characterized and the results are used to design a strategy for their effective integration in waste-to-energy processes. Energy content, proximate and ultimate analysis, composition, ash fusibility and thermal behaviour were determined. For the physicochemical analysis UNE standard methods were used. Characterization results showed that the three wastes have good quality for thermochemical conversion with energy contents between 19 MJ/kg (beer bagasse) and 16 MJ/kg (orange juice residue) and ash contents below 10% in all cases. However, some drawbacks were found: high moisture (76%), nitrogen (3.5%) and sulphur (0.2%) content for beer bagasse; elevated nitrogen (1.1%) and sulphur (0.15%) concentration for grape stem and nitrogen (1%) content for orange juice residue. All this information has been used to design a smart strategy for selecting a sustainable and environmental friendly waste to energy processes as part of a circular economy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gumisiriza, R., Hawumba, J.F., Okure, M., Hensel, O.: Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol. Biofuels (2017). https://doi.org/10.1186/s13068-016-0689-5

    Article  Google Scholar 

  2. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 103(1), 249–258 (2012). https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  3. RETOPROSOST Project (P0213/MAE-2907). In: Regional Government of Madrid, (2013)

  4. Stehlík, P.: Contribution to advances in waste-to-energy technologies. J. Clean. Prod. 17(10), 919–931 (2009). https://doi.org/10.1016/j.jclepro.2009.02.011

    Article  Google Scholar 

  5. Perrot, J.-F., Subiantoro, A.: Municipal waste management strategy review and waste-to-energy potentials in New Zealand. Sustainability. 10(9), 3114 (2018). https://doi.org/10.3390/su10093114

    Article  Google Scholar 

  6. Pan, S.-Y., Du, M.A., Huang, I.T., Liu, I.H., Chang, E.E., Chiang, P.-C.: Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. J. Clean. Prod. 108, 409–421 (2015)

    Article  Google Scholar 

  7. Virmond, E., Rocha, J.D., Moreira, R.F.P.M., José, H.J.: Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study. Braz. J. Chem. Eng. 30, 197–230 (2013)

    Article  Google Scholar 

  8. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 139, 1–4 (2013). https://doi.org/10.1016/j.biortech.2013.03.197

    Article  Google Scholar 

  9. Permchart, W., Kouprianov, V.I.: Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresour. Technol. 92(1), 83–91 (2004). https://doi.org/10.1016/j.biortech.2003.07.005

    Article  Google Scholar 

  10. López, I.S., Izquierdo, A.G., Alcón, N.E.: Análisis comparativo de las tecnologías de valorización de residuos basadas en la gasificación. In: Paper presented at the Conama: Congreso Nacional del Medio Ambiente

  11. Nhuchhen, D.R.: Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel. 180, 348–356 (2016). https://doi.org/10.1016/j.fuel.2016.04.058

    Article  Google Scholar 

  12. Shen, J., Zhu, S., Liu, X., Zhang, H., Tan, J.: The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manag. 51(5), 983–987 (2010). https://doi.org/10.1016/j.enconman.2009.11.039

    Article  Google Scholar 

  13. Erol, M., Haykiri-Acma, H., Küçükbayrak, S.: Calorific value estimation of biomass from their proximate analyses data. Renew. Energy. 35(1), 170–173 (2010). https://doi.org/10.1016/j.renene.2009.05.008

    Article  Google Scholar 

  14. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Spanish biofuels heating value estimation. Part II: proximate analysis data. Fuel. 117, 1139–1147 (2014). https://doi.org/10.1016/j.fuel.2013.08.049

    Article  Google Scholar 

  15. Özyuğuran, A., Yaman, S.: Prediction of calorific value of biomass from proximate analysis. Energy Procedia. 107, 130–136 (2017). https://doi.org/10.1016/j.egypro.2016.12.149

    Article  Google Scholar 

  16. Abdul Wahid, F.R.A., Saleh, S., Abdul Samad, N.A.F.: Estimation of higher heating value of torrefied palm oil wastes from proximate analysis. Energy Procedia. 138, 307–312 (2017). https://doi.org/10.1016/j.egypro.2017.10.102

    Article  Google Scholar 

  17. Telmo, C., Lousada, J., Moreira, N.: Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 101(11), 3808–3815 (2010). https://doi.org/10.1016/j.biortech.2010.01.021

    Article  Google Scholar 

  18. Villanueva, M.J.D.: La calidad en el sector de los biocombustibles sólidos. Parámetros y normas de certificación. (2014)

  19. Bryers, R.W.: Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 22(1), 29–120 (1996). https://doi.org/10.1016/0360-1285(95)00012-7

    Article  Google Scholar 

  20. Niu, Y., Tan, H., Hui, S.: Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 52, 1–61 (2016). https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  21. Bioenarea: The Bioenergy System Planners Handbook.-BYSPLAN. Bioenarea. http://bisyplan.bioenarea.eu/ash_appendix.html (2015)

  22. Fernández Llorente, M.J., Carrasco García, J.E.: Comparing methods for predicting the sintering of biomass ash in combustion. Fuel. 84(14), 1893–1900 (2005). https://doi.org/10.1016/j.fuel.2005.04.010

    Article  Google Scholar 

  23. Wall, T.F., Gupta, S.K., Gupta, R.P., Sanders, R.H., Creelman, R.A., Bryant, G.W.: False deformation temperatures for ash fusibility associated with the conditions for ash preparation. Fuel. 78(9), 1057–1063 (1999). https://doi.org/10.1016/S0016-2361(99)00017-4

    Article  Google Scholar 

  24. Dunnu, G., Maier, J., Scheffknecht, G.: Ash fusibility and compositional data of solid recovered fuels. Fuel. 89(7), 1534–1540 (2010). https://doi.org/10.1016/j.fuel.2009.09.008

    Article  Google Scholar 

  25. Llorente, M.J.F., Laplaza, J.M.M., Cuadrado, R.E., García, J.E.C.: Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion. Fuel. 85(9), 1157–1165 (2006). https://doi.org/10.1016/j.fuel.2005.11.019

    Article  Google Scholar 

  26. Ramos Casado, R., Arenales Rivera, J., Borjabad García, E., Escalada Cuadrado, R., Fernández Llorente, M., Bados Sevillano, R., Pascual Delgado, A.: Classification and characterisation of SRF produced from different flows of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues. Waste Manag. 47, 206–216 (2016). https://doi.org/10.1016/j.wasman.2015.05.018

    Article  Google Scholar 

  27. Jenkins, B.M., Baxter, L.L., Miles, T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54(1), 17–46 (1998). https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  28. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Biomass sources for thermal conversion. Techno-economical overview. Fuel. 195, 182–189 (2017). https://doi.org/10.1016/j.fuel.2017.01.063

    Article  Google Scholar 

  29. FAO: 7. The Research Progress of Biomass Pyrolysis Processes. FAO, Italy (1994)

  30. Bridgwater, T.: Challenges and opportunities in fast pyrolysis of biomass: part I. Johnson Matthey Technol. Rev. 62(1), 118–130 (2018)

    Article  Google Scholar 

  31. Vos, J.: Biomass Energy for Heating and Hot Water Supply in Belarus. Best Practice Guidelines. Part A: Biomass Combustion. In: vol. BYE/03/G31, pp. 1–125. BTG Biomass Technology Group BV, The Netherlands (2005)

    Google Scholar 

  32. Biedermann, F., Obernberger, I.: Ash-related problems during biomass combustion and possibilities for a sustainable ash utilisation

  33. Mussatto, S.I.: Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 94(7), 1264–1275 (2014). https://doi.org/10.1002/jsfa.6486

    Article  Google Scholar 

  34. Wilson, L., Yang, W., Blasiak, W., John, G.R., Mhilu, C.F.: Thermal characterization of tropical biomass feedstocks. Energy Convers. Manag. 52(1), 191–198 (2011). https://doi.org/10.1016/j.enconman.2010.06.058

    Article  Google Scholar 

  35. Rubio, E., Carmona, Y., Igartuburu, J.M., Barroso, C.G., Macías, F.A., García-Moreno, M.V.: Estudio de la composición de los residuos de vinificación con fines aimenticios. In: Encuadernaciones, M., Cádiz, U.D. (eds.) Actualizaciones en Investigaciones Vitivinícola, pp. 609–612. XI Congreso Nacional de Investigación Enológica, Jerez de la Frontera, (2011)

    Google Scholar 

  36. Ortiz, I., Torreiro, Y., Molina, G., Maroño, M., Sánchez, J.M.: A feasible application of circular economy: spent grain energy recovery in the beer industry. In: Paper presented at the 6th international conference on sustainable solid waste management (Naxos2018), Naxos, Greece, 13–16 June 2018

  37. Morrow, C.W.: Econoic Viability of Brewery Spent Grain as Biofuel. In: SANDIA REPORT. vol. SAND2016-0424R, pp. 1–45. Albuquerque, Sandia National Laboratories (2016)

Download references

Acknowledgements

The authors wish to thank the Regional Government of Madrid for its financial support through the RETOPROSOST Project (P2013/MAE-2907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ortiz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, I., Maroño, M., Torreiro, Y. et al. Strategy for the Design of Waste to Energy Processes Based on Physicochemical Characterisation. Waste Biomass Valor 11, 2961–2971 (2020). https://doi.org/10.1007/s12649-019-00631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00631-y

Keywords

Navigation