Skip to main content

Advertisement

Log in

Secretome Analysis and Bioprospecting of Lignocellulolytic Fungal Consortium for Valorization of Waste Cottonseed Cake by Hydrolase Production and Simultaneous Gossypol Degradation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The utilisation of agro-wastes as feedstocks for biorefinery development is a promising strategy to combat the looming energy challenges with minimal environmental impact. Deoiled cottonseed cake is an abundant lignocellulosic residual agro-waste with restricted usage due to presence of toxic gossypol. The utilisation of this waste biomass for production of hydrolases (cellulase and xylanase) and simultaneous degradation of toxic gossypol was attempted by fungal mediated bioprocess development. The secretome profiling was carried out to gain insights into the diversity of proteins expressed by the fungal consortium under solid-state fermentation (SSF) conditions.

Methods

The three potential lignocellulolytic fungal strains, Aspergillus niger, Trichoderma reesei, Phanerochaete chrysosporium and their consortium were exploited for SSF of cottonseed cake. The secretome profiling was carried out by LC-ESI MS/MS based proteomic approach. The efficiency of hydrolases produced from seed cake was verified by saccharification of wheat straw.

Results

The consortium produced highest titre of cellulase (FPase: 21.62 IU; CMCase: 155.41 IU; β-glucosidase: 29.73 IU) and xylanase (2008.05 IU) per gram cake with 90% reduction in gossypol content. The secretome analysis revealed versatile mixture of 81 proteins comprising of hemicellulases (36%), cellulases (17%), amylases (7%), esterases (6%), proteases (5%), hypothetical proteins (20%) and other proteins (9%). The Glycosyl hydrolase (GH) proteins constituted 73% of the total secretome. The high yield of reducing sugars (402.38 mg/g) was obtained from saccharification of wheat straw.

Conclusions

The present study highlights the sustainable valorization of an agro-waste by microbiological transformation for production of value-added products in biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nizami, A., Rehan, M., Waqas, M., Naqvi, M., Ouda, O., Shahzad, K., Miandad, R., Khan, M., Syamsiro, M., Ismail, I.: Waste biorefineries: enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017)

    Google Scholar 

  2. Didaskalou, C., Buyuktiryaki, S., Kecili, R., Fonte, C.P., Szekely, G.: Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: from materials to sustainable process design. Green Chem. 19(13), 3116–3125 (2017)

    Google Scholar 

  3. Baydar, G., Ciliz, N., Mammadov, A.: Life cycle assessment of cotton textile products in Turkey. Resour. Conserv. Recycl. 104, 213–223 (2015)

    Google Scholar 

  4. Ma, D., Hu, Y., Yang, C., Liu, B., Fang, L., Wan, Q., Liang, W., Mei, G., Wang, L., Wang, H.: Genetic basis for glandular trichome formation in cotton. Nat. Commun. 7, 10456 (2016)

    Google Scholar 

  5. Gadelha, I.C.N., Fonseca, N.B.S., Oloris, S.C.S., Melo, M.M., Soto-Blanco, B.: Gossypol toxicity from cottonseed products. Sci. World J. 2014 (2014)

  6. Zhou, M., Zhang, C., Wu, Y., Tang, Y.: Metabolic engineering of gossypol in cotton. Appl. Microbiol. Biotechnol. 97(14), 6159–6165 (2013)

    Google Scholar 

  7. Jazi, V., Boldaji, F., Dastar, B., Hashemi, S.R., Ashayerizadeh, A.: Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 58(4), 402–408 (2017)

    Google Scholar 

  8. Ferreira, J.A., Mahboubi, A., Lennartsson, P.R., Taherzadeh, M.J.: Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresour. Technol. 215, 334–345 (2016)

    Google Scholar 

  9. Van Kuijk, S., Sonnenberg, A., Baars, J., Hendriks, W., Cone, J.: Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol. Adv. 33(1), 191–202 (2015)

    Google Scholar 

  10. Joshi, C., Khare, K., Gupta, S.N.: M.: Applications of solid-state fermentation process in biological detoxification of industrial wastes. Curr. Biochem. Eng. 1(1), 35–49 (2014)

    Google Scholar 

  11. Zhou, G., Chen, Y., Kong, Q., Ma, Y., Liu, Y.: Detoxification of Aflatoxin B1 by Zygosaccharomyces rouxii with solid state fermentation in peanut meal. Toxins 9(1), 42 (2017)

    Google Scholar 

  12. Qian, B., Yin, L., Yao, X., Zhong, Y., Gui, J., Lu, F., Zhang, F., Zhang, J.: Effects of fermentation on the hemolytic activity and degradation of Camellia oleifera saponins by Lactobacillus crustorum and Bacillus subtilis. FEMS Microbiol. Lett. 365(7), fny014 (2018)

    Google Scholar 

  13. Joshi, C., Mathur, P., Khare, S.K.: Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 102(7), 4815–4819 (2011)

    Google Scholar 

  14. Ortiz, G.E., Guitart, M.E., Cavalitto, S.F., Albertó, E.O., Fernández-Lahore, M., Blasco, M.: Characterization, optimization, and scale-up of cellulases production by Trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess. Biosyst. Eng. 38(11), 2117–2128 (2015)

    Google Scholar 

  15. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Google Scholar 

  16. Ghose, T., Bisaria, V.S.: Measurement of hemicellulase activities: part I Xylanases. Pure Appl. Chem. 59(12), 1739–1751 (1987)

    Google Scholar 

  17. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Google Scholar 

  18. Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. In: Wood, W.A., Kellogg, S.T. (eds.) Methods Enzymol, vol. 160, pp. 87–112. Elsevier, Amsterdam (1988)

    Google Scholar 

  19. Admasu, A., Chandravanshi, B.: Spectrophotometric determination of total gossypol in cottonseeds and cottonseed meals. Anal. Chem. 56(1), 30–32 (1984)

    Google Scholar 

  20. Lin, H., Gounder, M.K., Bertino, J.R., Kong, A.-N.T., DiPaola, R.S., Stein, M.N.: A validated HPLC assay for the determination of R-(–)-gossypol in human plasma and its application in clinical pharmacokinetic studies. J. Pharm. Biomed. Anal. 66, 371–375 (2012)

    Google Scholar 

  21. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976)

    Google Scholar 

  22. Aebi, H.: Catalase in vitro. Methods Enzymol. 105, 121–126 (1984)

    Google Scholar 

  23. Mavis, R.D., Stellwagen, E.: Purification and subunit structure of glutathione reductase from bakers’ yeast. J. Biol. Chem. 243(4), 809–814 (1968)

    Google Scholar 

  24. Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., Xu, Y.: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012)

    Google Scholar 

  25. Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H.: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011)

    Google Scholar 

  26. Grewal, J., Khare, S.K.: One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresour. Technol. 251, 268–273 (2018)

    Google Scholar 

  27. Guerriero, G., Hausman, J.-F., Strauss, J., Ertan, H., Siddiqui, K.S.: Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci. 234, 180–193 (2015)

    Google Scholar 

  28. Grewal, J., Khare, S.K.: 2-Pyrrolidone synthesis from γ-aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake. Bioprocess. Biosyst. Eng. 40(1), 145–152 (2017)

    Google Scholar 

  29. Maehara, L., Pereira, S.C., Silva, A.J., Farinas, C.S.: One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol. Prog. 34(3), 671–680 (2018)

    Google Scholar 

  30. Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34(1), 1160–1167 (2011)

    Google Scholar 

  31. Dias, L.M., dos Santos, B.V., Albuquerque, C.J.B., Baeta, B.E.L., Pasquini, D., Baffi, M.A.: Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J. Appl. Microbiol. 124(3), 708–718 (2018)

    Google Scholar 

  32. Leite, P., Salgado, J.M., Venâncio, A., Domínguez, J.M., Belo, I.: Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 214, 737–746 (2016)

    Google Scholar 

  33. Rodríguez-Zúñiga, U.F., Neto, V.B., Couri, S., Crestana, S., Farinas, C.S.: Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Appl. Biochem. Biotechnol. 172(5), 2348–2362 (2014)

    Google Scholar 

  34. Xin, F., Geng, A.: Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl. Biochem. Biotechnol. 162(1), 295–306 (2010)

    Google Scholar 

  35. Saratale, G.D., Kshirsagar, S.D., Sampange, V.T., Saratale, R.G., Oh, S.-E., Govindwar, S.P., Oh, M.-K.: Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl. Biochem. Biotechnol. 174(8), 2801–2817 (2014)

    Google Scholar 

  36. He, Z., Zhang, H., Olk, D.C.: Chemical composition of defatted cottonseed and soy meal products. PloS one 10(6), e0129933 (2015)

  37. Zhang, Y., Zhang, Z., Dai, L., Liu, Y., Cheng, M., Chen, L.: Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis. Asian-Australas J. Anim. Sci. 31(1), 63–70 (2018)

    Google Scholar 

  38. Shi, C., He, J., Yu, J., Yu, B., Mao, X., Zheng, P., Huang, Z., Chen, D.: Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PloS one 11(4), e0153230 (2016)

  39. Wang, X., Jin, Q., Wang, T., Huang, J., Xia, Y., Yao, L., Wang, X.: Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal. Ann. Microbiol. 62(3), 1013–1020 (2012)

    Google Scholar 

  40. Mellon, J.E., Zelaya, C.A., Dowd, M.K., Beltz, S.B., Klich, M.A.: Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi. J. Agric. Food Chem. 60(10), 2740–2745 (2012)

    Google Scholar 

  41. Santana, A.T., Guelfi, M., Medeiros, H.C., Tavares, M.A., Bizerra, P.F., Mingatto, F.E.: Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E. Biol. Res. 48(1), 43 (2015)

    Google Scholar 

  42. Mukherjee, A., Das, D., Mondal, S.K., Biswas, R., Das, T.K., Boujedaini, N., Khuda-Bukhsh, A.R.: Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol. Environ. Saf. 73(2), 172–182 (2010)

    Google Scholar 

  43. Huang, C., Lai, C., Xu, P., Zeng, G., Huang, D., Zhang, J., Zhang, C., Cheng, M., Wan, J., Wang, R.: Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere 187, 70–77 (2017)

    Google Scholar 

  44. Florencio, C., Cunha, F.M., Badino, A.C., Farinas, C.S., Ximenes, E., Ladisch, M.R.: Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: enzyme production for sugarcane bagasse hydrolysis. Enzyme Microb. Technol. 90, 53–60 (2016)

    Google Scholar 

  45. Adav, S.S., Ravindran, A., Sze, S.K.: Study of Phanerochaete chrysosporium secretome revealed protein glycosylation as a substrate-dependent post-translational modification. J. Proteome Res. 13(10), 4272–4280 (2014)

    Google Scholar 

  46. Rocha, V.A.L., Maeda, R.N., Pereira Jr, N., Kern, M.F., Elias, L., Simister, R., Steele-King, C., Gómez, L.D., McQueen-Mason, S.J.: Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol. Prog. 32(2), 327–336 (2016)

    Google Scholar 

  47. Rubio, M.V., Zubieta, M.P., Cairo, J.P.L.F., Calzado, F., Leme, A.F.P., Squina, F.M., Prade, R.A., Damásio, A.R.L.: Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose. Biotechnol. Biofuels 9(1), 168 (2016)

    Google Scholar 

  48. Yang, X., Sun, J.Y., Guo, J.L., Weng, X.Y.: Identification and proteomic analysis of a novel gossypol-degrading fungal strain. J. Sci. Food Agric. 92(4), 943–951 (2012)

    Google Scholar 

  49. Tiwari, R., Singh, S., Singh, N., Adak, A., Rana, S., Sharma, A., Arora, A., Nain, L.: Unwrapping the hydrolytic system of the phytopathogenic fungus Phoma exigua by secretome analysis. Process Biochem. 49(10), 1630–1636 (2014)

    Google Scholar 

  50. Deswal, D., Khasa, Y.P., Kuhad, R.C.: Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102(10), 6065–6072 (2011)

    Google Scholar 

  51. Zabihi, S., Alinia, R., Esmaeilzadeh, F., Kalajahi, J.F.: Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. Biosys. Eng. 105(3), 288–297 (2010)

    Google Scholar 

  52. Sadaf, A., Morya, V.K., Khare, S.: Applicability of Sporotrichum thermophile xylanase in the in situ saccharification of wheat straw pre-treated with ionic liquids. Process Biochem. 51(12), 2090–2096 (2016)

    Google Scholar 

  53. Han, L., Feng, J., Zhang, S., Ma, Z., Wang, Y., Zhang, X.: Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz. J. Microbiol. 43, 53–61 (2012)

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial grant provided by Department of Science and Technology (DST/INT/TUNISIA/P07/2017) and the Ministry of Food Processing Industries (Govt. of India) for carrying out this study. Jasneet Grewal is grateful to Indian Institute of Technology Delhi for her Senior Research Fellowship and providing the infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Khare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12649_2019_620_MOESM1_ESM.docx

Supplementary Fig.S1 SEM image of (a) unfermented cottonseed cake (control) (b) A. niger (c) T. reesei (d) P. chrysosporium (e) consortium growing on cottonseed cake at ×2500 magnification (DOCX 1104 KB)

12649_2019_620_MOESM2_ESM.docx

Supplementary Fig.S2 HPLC chromatogram of extracted gossypol-diamino-propanol (stable schiff’s base derivative) from cottonseed cake (a) unfermented (control) (b) fermented by P. chyrosporium (c) fermented by T. reesei (d) fermented by A. niger (e) fermented by consortium (DOCX 642 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, J., Tiwari, R. & Khare, S.K. Secretome Analysis and Bioprospecting of Lignocellulolytic Fungal Consortium for Valorization of Waste Cottonseed Cake by Hydrolase Production and Simultaneous Gossypol Degradation. Waste Biomass Valor 11, 2533–2548 (2020). https://doi.org/10.1007/s12649-019-00620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00620-1

Keywords

Navigation