Skip to main content
Log in

Improved Reactivity of Volcanic Ash using Municipal Solid Incinerator Fly Ash for Alkali-Activated Cement Synthesis

Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, municipal solid waste incinerator fly ash (MSWI-FA) was used as precursor to alter the reactivity of low reactive volcanic ash (VA) for alkali-activated cement synthesised. The effects of various proportions of MSWI-FA (0, 5, 10, 15 and 20%) on the final properties of the inorganic polymer are reported. The increase in MSWI-FA content increases the heat of reaction in MSWI-FA as the result of the reaction between the amorphous alumina-silica and the Ca-rich precursor. Isothermal conduction calorimetry, FTIR, XRD SEM/EDS, and physico-mechanical analyses were used to follow up the different formulations. New crystalline phases, namely Margarite (CaAl2 (Al2Si2)O10(OH)2, PDF#04-013-3004), Mordernite-(Ca) ((Ca, Na2, K2)(Al2 Si10 O24)·7H2O, PDF#00-011-0155) and Thernadite (Na2SO4, PDF#01-074-2036) confirm the good reactivity. The SEM/EDS exhibited the coexistence of C–S(-N-A)–H and N-A-S-H gels in binary system alkali-activated. The compressive strength and bulk density ranged from 9.38 to 21.07 MPa and from 1.56 to 1.77 g/cm3, respectively. These results indicated the possibility to use VA and MSWI-FA to synthesize room temperature alkali-activated matrices applicable in the manufacture of structural and functional materials. MSWI-FA appears energy-efficient and sustainable solution for the improvement of the volcanic ash based alkaline activated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E.M.: Sustainable development and climate change initiatives. Cem. Concr. Res. 38, 115–127 (2008). https://doi.org/10.1016/j.cemconres.2007.09.008

    Article  Google Scholar 

  2. Živica, V., Palou, M.T., Križma, M.: Geopolymer cements and their properties: a review. Build. Res. J. (2015). https://doi.org/10.2478/brj-2014-0007

    Article  Google Scholar 

  3. Davidovits, J.: Geopolymer cement a review, published in geopolymer science and technics, Technical paper #21, Geopolymer Institute Library. https://www.geopolymer.org/ (2013)

  4. Davidovits, J.: PROPERTIES OF GEOPOLYMER CEMENTS Joseph Davidovits Geopolymer Institute, Cordi-Geopolymère SA, 16 rue Galilée, 02100 Saint-Quentin, France. Geopolymer Inst. pp. 1–19 (1994)

  5. Liew, Y.M., Heah, C.Y., Mustafa, M., Kamarudin, A.B.: H.: Structure and properties of clay-based geopolymer cements: a review. Prog. Mater. Sci. 83, 595–629 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.002

    Article  Google Scholar 

  6. Noël, J., Djobo, Y., Elimbi, A., Tchakouté, H.K.: Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environ. Sci. Pollut. Res. 24: 4433–4446 (2017). https://doi.org/10.1007/s11356-016-8230-8

    Article  Google Scholar 

  7. Kouamo Tchakoute, H., Elimbi, A., Diffo Kenne, B.B., Mbey, J.A., Njopwouo, D.: Synthesis of geopolymers from volcanic ash via the alkaline fusion method: effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram. Int. 39, 269–276 (2013). https://doi.org/10.1016/j.ceramint.2012.06.021

    Article  Google Scholar 

  8. Yankwa Djobo, J.N., Elimbi, A., Tchakouté, H.K., Kumar, S.: Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 6, 39106–39117 (2016). https://doi.org/10.1039/C6RA03667H

    Article  Google Scholar 

  9. Kamseu, E., Leonelli, C., Perera, D.S., Melo, U.C., Lemougna, P.N.: Investigation of volcanic ash based geopolymers as potential building materials. InterCeram 58, 136–140 (2009)

    Google Scholar 

  10. Najimi, M.: Alkali-activated natural pozzolan/slag binder for sustainable concrete, Ph.D. Thesis,. Univ. Nevada Las Vegas. 431 (2016). https://doi.org/10.1007/s12665-016-5898-5

  11. Tchakouté, H.K., Kong, S., Djobo, J.N.Y., Tchadjié, L.N., Njopwouo, D.: A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceram. Int. 41, 12568–12577 (2015). https://doi.org/10.1016/j.ceramint.2015.06.073

    Article  Google Scholar 

  12. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25, 2906–2910 (2011). https://doi.org/10.1016/j.conbuildmat.2010.12.031

    Article  Google Scholar 

  13. Djobo, J.N.Y., Tchakouté, H.K., Ranjbar, N., Elimbi, A., Tchadjié, L.N., Njopwouo, D., Biernacki, J.: Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: effect of synthesis conditions. J. Am. Ceram. Soc. 99, 3159–3166 (2016). https://doi.org/10.1111/jace.14332

    Article  Google Scholar 

  14. Gao, X., Yuan, B., Yu, Q.L., Brouwers, H.J.H.: Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 164, 410–419 (2017). https://doi.org/10.1016/j.jclepro.2017.06.218

    Article  Google Scholar 

  15. Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., Leonelli, C.: Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag. 30, 673–679 (2010). https://doi.org/10.1016/j.wasman.2009.09.032

    Article  Google Scholar 

  16. Ivan Diaz-Loya, E., Allouche, E.N., Eklund, S., Joshi, A.R., Kupwade-Patil, K.: Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash. Waste Manag. 32, 1521–1527 (2012). https://doi.org/10.1016/j.wasman.2012.03.030

    Article  Google Scholar 

  17. Yahya, Z., Abdullah, M.M.A.B., Hussin, K., Ismail, K.N., Razak, R.A., Sandu, A.V.: Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 8, 2227–2242 (2015). https://doi.org/10.3390/ma8052227

    Article  Google Scholar 

  18. Keppert, M., Pavlík, Z., Tydlitát, V., Volfová, P., Švarcová, S., Šyc, M., Černý, R.: Properties of municipal solid waste incineration ashes with respect to their separation temperature. Waste Manag. Res. 30, 1041–1048 (2012). https://doi.org/10.1177/0734242X12448513

    Article  Google Scholar 

  19. Tome, S., Etoh, M., Etame, J., Sanjay, K.: Characterization and leachability behaviour of geopolymer cement synthesised from municipal solid waste incinerator fly ash and volcanic ash blends. Recyling (2018). https://doi.org/10.3390/recycling3040050

    Article  Google Scholar 

  20. Davidovits, J.: Geopolymer Chemistry & Applications. Geopolymer Institute, Saint-Quentin (2008)

    Google Scholar 

  21. Criado, M., Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II:29Si MAS-NMR Survey. Microporous Mesoporous Mater. 109, 525–534 (2008). https://doi.org/10.1016/j.micromeso.2007.05.062

    Article  Google Scholar 

  22. Kriskova, L., Machiels, L., Pontikes, Y.: Inorganic polymers from a plasma convertor slag: effect of activating solution on microstructure and properties. J. Sustain. Metall. 1, 240–251 (2015). https://doi.org/10.1007/s40831-015-0022-8

    Article  Google Scholar 

  23. Saikia, B.J., Parthasarathy, G., Sarmah, N.C.: Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci. 31, 775–779 (2008)

    Article  Google Scholar 

  24. Bernal, S.A., Provis, J.L., Rose, V., Mejía De Gutierrez, R.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54 (2011). https://doi.org/10.1016/j.cemconcomp.2010.09.004

    Article  Google Scholar 

  25. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 (2005). https://doi.org/10.1016/j.cemconres.2004.10.042

    Article  Google Scholar 

  26. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., MacPhee, D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 41, 923–931 (2011). https://doi.org/10.1016/j.cemconres.2011.05.006

    Article  Google Scholar 

  27. Degirmenci, F.N.: Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans. Ceram. Silikaty 61, 340–350 (2017). https://doi.org/10.13168/cs.2017.0033

    Article  Google Scholar 

  28. Adu-Amankwah, S., Khatib, J.M., Searle, D.E., Black, L.: Effect of synthesis parameters on the performance of alkali-activated non-conformant en 450 pulverised fuel ash. Constr. Build. Mater. 121, 453–459 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.132

    Article  Google Scholar 

  29. Huanc, C.K., Konn, P.F., Liniaersity, C., York, N., Yorh, N.: Infrared study of the carbonate minerals. Am. Mineral. 45, 311–324 (1960)

    Google Scholar 

  30. Rosas-Casarez, C.A., Arredondo-Rea, S.P.: Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. Int. J. Adv. Comput. Sci. Appl. 4, 221–226 (2014)

    Google Scholar 

  31. García Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009). https://doi.org/10.1016/j.cemconres.2009.01.003

    Article  Google Scholar 

  32. Wang, K., Shah, S.P., Mishulovich, A.: Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem. Concr. Res. 34, 299–309 (2004). https://doi.org/10.1016/j.cemconres.2003.08.003

    Article  Google Scholar 

  33. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38, 554–564 (2008). https://doi.org/10.1016/j.cemconres.2007.11.001

    Article  Google Scholar 

  34. Leonelli, C.: Design of inorganic polymer mortar from ferricalsialic and calsialic slags for indoor humidity control. Materials. (2016). https://doi.org/10.3390/ma9060410

    Article  Google Scholar 

  35. Fernandez-Jimenez, A., Puertas, F.: Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 13, 115–121 (2001). https://doi.org/10.1680/adcr.13.3.115.39288

    Article  Google Scholar 

  36. Saloma, H., Elysandi, D.O., Meykan, D.G.: Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor. AIP Conf. Proc. 1903 (2017). https://doi.org/10.1063/1.5011552

Download references

Acknowledgements

The work presented in the paper has been carried out under CSIR-TWAS Sandwich Postgraduate Fellowship Award FR No 3240293597 to the first author and CSIR-TWAS is greatly acknowledged. The authors are grateful to Director, CSIR-National Metallurgical Laboratory, Jamshedpur, India for extending all the facility to carry out this research. The authors are also grateful Dr Kamseu Elie, Researcher at Local Materials Promotion Authority/MIPROMALO, Cameroon to revise the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Tome.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tome, S., Etoh, MA., Etame, J. et al. Improved Reactivity of Volcanic Ash using Municipal Solid Incinerator Fly Ash for Alkali-Activated Cement Synthesis. Waste Biomass Valor 11, 3035–3044 (2020). https://doi.org/10.1007/s12649-019-00604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00604-1

Keywords

Navigation