Skip to main content
Log in

Valorization of Parthenium hysterophorus Biomass by its Utilization in Endoglucanase Production by Penicillium citrinum NAF5

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The primary aim of the present study was to evaluate the potential of P. hysterophorus weed biomass valorization through its utilization in the production of cellulase enzyme.

Methods

The work involved bio-prospecting of fungal microbes and selecting the most potent fungal isolate for its cellulolytic potential. Thereafter, endoglucanase production by the fungal isolate was enhanced by utilizing P. hysterophorus biomass as a substrate. The optimization study involved the production of the enzyme under both stationary as well as shaking conditions. A scale-up for the enzyme production was also carried out under batch mode of fermentation in Erlenmeyer flasks as well as in a 2 l-bioreactor.

Results

Penicillium citrinum NAF5, isolated from garden soil, was found as a potent cellulase producer. Under optimized conditions, P. citrinum NAF5 produced 4.224 ± 0.035 U/ml and 3.13 ± 0.026 U/ml endoglucanase in the stationary and shaking conditions of fermentation respectively, in the presence of steam pretreated P. hysterophorus biomass as the substrate. Scale-up in the flasks resulted in 3.86% and 12.11% increase in enzyme production under stationary and shaking conditions respectively; while 24.12% enhancement in enzyme production was achieved in a 2 l fermenter.

Conclusions

The study reveals that the biomass from P. hysterophorus can be utilized for cellulase production, and this can be an effective approach for the valorization of this weed’s biomass. Also, cellulase production by P. citrinum NAF5 fungus is appreciable and holds potential for utilization in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaur, M., Aggarwal, N.K., Kumar, V., Dhiman, R.: Effects and management of Partheniumhysterophorus: a weed of global significance. Int. Sch. Res. Not. 2014, 12 (2014)

    Google Scholar 

  2. Patel, S.: Harmful and beneficial aspects of Parthenium hysterophorus: an update. 3 Biotech. 1, 1–9 (2011)

    MathSciNet  Google Scholar 

  3. Nyasembe, V.O., Cheseto, X., Kaplan, F., Foster, W.A., Teal, P.E.A., Tumlinson, J.H., Borgemeister, C., Torto, B.: The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS ONE. 10, 1–15 (2015)

    Google Scholar 

  4. Saini, A., Aggarwal, N.K., Sharma, A., Kaur, M., Yadav, A.: Utility potential of Parthenium hysterophorus for its strategic management. Adv. Agric. 2014, 1–16 (2014)

    Google Scholar 

  5. Sharma, V., Pant, S.: Weed as Underutilized bio-resource and management tool: a comprehensive review. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0212-2

    Article  Google Scholar 

  6. Patil, Y.P., Pawar, S.H., Dhote, A.R., Dhote, P.S., Gokarn, A.N.: Valorization of harmful parthenium weed by its conversion into active charcoal. Int. J. Environ. Sci. Technol. (2018). https://doi.org/10.1007/s13762-018-1643-9

    Article  Google Scholar 

  7. De Carvalho, M.L.D.A., Carvalhok, D.F., Gomes, E.D.Ba.G., Maeda, R.N., Santa Anna, L.M.M., De Castro, A.M., Pereira, N. Jr.: Optimisation of cellulase production by Penicillium funiculosum in a stirred tank bioreactor using multivariate response surface analysis. Enzyme Res. 2014, 8 (2014)

    Google Scholar 

  8. El-Hadi, A.A., El-Nour, S.A., Hammad, A., Kamel, Z., Anwar, M.: Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J. Radiat. Res. Appl. Sci. 7, 23–28 (2014)

    Google Scholar 

  9. Han, L., Feng, J., Zhu, C., Zhang, X.: Optimizing cellulase production of Penicillium waksmanii F10-2 with response surface methodology. Afr. J. Biotechnol. 8, 3879–3886 (2010)

    Google Scholar 

  10. Ja’afaru, M.I.: Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol. 2013, 1–7 (2013)

    Google Scholar 

  11. Sajith, S., Priji, P., Sreedevi, S., Benjamin, S.: An overview on fungal cellulases with an industrial perspective. J. Nutr. Food Sci. 6, 1–13 (2016)

    Google Scholar 

  12. Teather, R.M., Wood, P.J.: Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780 (1982)

    Google Scholar 

  13. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  14. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980)

    Google Scholar 

  15. Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4. Mol. Biol. Evol. 24, 1596–1599 (2007)

    Google Scholar 

  16. Ghose, T.K.: Measurment of cellilase activities. Appl. Chem. Div. Comm. Biotechnol. 59, 695–702 (1987)

    Google Scholar 

  17. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  18. Dopazo, J.: Estimating errors and confidence intervals for branch lengths in phylognetic trees by bootstrap approach. J.Mol. Evol. 38, 300–301 (1994)

    Google Scholar 

  19. Brijwani, K., Vadlani, P.V.: Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. 2011, 1–10 (2011)

    Google Scholar 

  20. Camassola, M., Dillon, A.J.P.: Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture. Biomed. Res. Int. 2014, 1–9 (2014)

    Google Scholar 

  21. Amaeze, N.J., Okoliegbe, I.N., Francis, M.E.: Cellulase production by Aspergillus niger and Saccharomyces cerevisiae using fruit wastes as substrates. Int. J. Appl. Microbiol. Biotechnol. Res. 3, 36–44 (2015)

    Google Scholar 

  22. Aboul-Fotouh, G.E., El-Grahy, G.M., Azzaz, H.H., Abd El-Mola, A.M, Mousa, G.A.: Fungal cellulase production optimization and its utilization in goat’ s rations degradation. Asian J. Anim. Vet. Adv. 11, 824–831 (2016)

    Google Scholar 

  23. Shah, S.P., Kalia, K.S., Patel, J.S.: Optimization of cellulase production by Penicillium oxalicum using banana agrowaste as a substrate. J. Gen. Appl. Microbiol. 43, 35–43 (2015)

    Google Scholar 

  24. Prasanna, H.N., Ramanjaneyulu, G., Reddy, B.R.: Optimization of cellulase production by Penicillium sp. 3Biotech. 6, 1–11 (2016)

    Google Scholar 

  25. Bhattacharya, S., Das, A., Patnaik, A., Bokade, P., Rajan, S.S.: Submerged fermentation and characterization of carboxymethyl cellulase from a rhizospheric isolate of Trichoderma viride associated with Azadirachta indica. J. Sci. Ind. Res. 73, 225–230 (2014)

    Google Scholar 

  26. Gunny, A.A.N., Arbain, D., Jamal, P., Gumba, R.E.: Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi. J. Biol. Sci. 22, 476–483 (2015)

    Google Scholar 

  27. Mushimiyimanaa, I., Tallapragada, P.: Agro wastes residues as strategy to produce cellulase. Int. J. ChemTech. Res. 8, 89–97 (2015)

    Google Scholar 

  28. Gautam, S.P., Bundela, P.S., Pandey, A.K., Khan, J., Awasthi, M.K., Sarsaiya, S.: Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int. 2011, 8 (2011)

    Google Scholar 

  29. Singh, A., Singh, N., Bishnoi, N.R.: Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int. J. Civ. Environ. Eng. 3, 23–26 (2009)

    Google Scholar 

  30. Mrudula, S., Murugammal, R.: Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127 (2011)

    Google Scholar 

  31. Das, B.C., Das, M., Sinha, P.: Production of cellulase enzyme by submerged fermentation process from Penicillium variabile. Biotechnol. 4, 42–44 (2014)

    Google Scholar 

  32. Beitel, S.M., Knob, A.: Penicillium miczynskii β-glucosidase: a gluocse tolerant enzyme produced using pineapple peel as substrate. Ind. Microbiol. 9, 293–300 (2013). https://doi.org/10.1089/ind.2013.0016

    Article  Google Scholar 

  33. Nathan, V.K., Rani, M.E., Rathinasamy, G., Dhiraviam, K.N., Jayavel, S.: Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus. 3, 1–12 (2014)

    Google Scholar 

  34. Morikawa, Y., Ohashi, T., Mantani, O., Okada, H.: Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 44, 106–111 (1995)

    Google Scholar 

  35. Muthuvelayudham, R., Viruthagiri, T.: Fermentative production and kinetics of cellulase protein on Trichoderma reesei using sugarcane bagasse and rice straw. Afr. J. Biotechnol. 5, 1873–1881 (2006)

    Google Scholar 

  36. Fang, X., Yano, S., Inoue, H., Sawayama, S.: Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. J. Biosci. Bioeng. 106, 115–120 (2008)

    Google Scholar 

  37. Andrade, J.P., Sim, A., Bispo, R., Arthur, P., Marbach, S., Pires, R.: Production and partial characterization of cellulases from Trichoderma sp. IS-05 isolated from Sandy Coastal Plains of Northeast Brazil. Enzyme Res. 2011, 7 (2011)

    Google Scholar 

  38. Shahriarinour, M., Noor, M., Wahab, A., Mohamad, R., Mustafa, S., Ariff, A.B.: Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr. J. Biotechnol. 10, 7459–7467 (2011)

    Google Scholar 

  39. Hulme, M.A., Stranks, D.W.: Induction and regulation of production of cellulase by fungi. Nature 226, 469–470 (1970)

    Google Scholar 

  40. Knob, A., Beitel, S.M., Fortkamp, D., Rafael, C., Terrasan, F., Almeida, A.F., De: Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’ s spent grain as substrate. Biomed. Res. Int. 2013, 728735 (2013)

    Google Scholar 

  41. Jang, H.D., Chang, K.S.: Themostable cellulases from Streptomyces T3-1: scale up production in 50-l fermenter. Biotechnol. Lett. 27, 239–242 (2005)

    Google Scholar 

  42. Ikeda, Y., Hayashi, H., Okuda, N., Park, E.Y.: Efficient cellulase production by filamentous fungus Acremonium cellulolyticus. Biotechnol. Prog. 23, 333–338 (2007)

    Google Scholar 

  43. Deka, D., Das, S.P., Sahoo, N., Das, D., Jawed, M., Goyal, D., Goyal, A.: Enhanced cellulase production from Bacillus subtilis by optimizing physical parameters for bioethanol production. ISRN Biotechnol. 2013, 1–11 (2013)

    Google Scholar 

  44. Singh, A., Adsul, M., Vaishnav, N., Mathur, A., Singhania, R.R.: Improved cellulase production by Penicillium janthinellum mutant. Indian J. Exp. Biol. 55, 436–440 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal.

Ethics declarations

Conflict of interest

The authors declare that there’s no conflict of interest regarding publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Aggarwal, N.K. Valorization of Parthenium hysterophorus Biomass by its Utilization in Endoglucanase Production by Penicillium citrinum NAF5. Waste Biomass Valor 11, 2591–2601 (2020). https://doi.org/10.1007/s12649-019-00602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00602-3

Keywords