Skip to main content

Advertisement

Log in

Biochemical Properties of Carbohydrate-Active Enzymes Synthesized by Penicillium chrysogenum Using Corn Straw as Carbon Source

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignocellulosic material is an alternative, renewable and cheaper source of molecules to be applied in greener industrial processes. Its utilization for this purpose requests steps of pre-treatment and hydrolysis. Filamentous fungi are receiving attention as source of plant cell wall degrading enzymes to apply in lignocellulosic biomass hydrolysis. In the present study, a strain of Penicillium chrysogenum CCDCA10756 isolated from Brazilian Cerrado soil (Savannah like biome) was evaluated as a producer of plant cell wall degrading enzymes aiming industrial application. The fungus cultivated in the presence of corn straw as sole carbon source secreted cellulases (endo-β-1,4-glucanases, cellobiohydrolases, β-glucosidases), endo-β-1,4-xylanases, and pectinases. Endo-β-1,4-xylanases and pectinases presented earlier production reaching maximum values after 3 days of growth in comparison to cellulolytic activities mostly produced after 5 days. Cellobiohydrolases and endo-β-1,4-glucanases present maximal activity in acid pH (3 and 4) and at 50 °C, whereas β-glucosidase presents maximal activity at pH 5.0 and 60 °C. Pectinases showed maximum activity in pH 8 at 50 °C. Furthermore, endo-β-1,4-glucanases and cellobiohydrolases displayed remarkable thermostability at 40 °C. Lignin-derived compounds, trans-ferulic acid, 4-hydroxybenzoic and syringaldehyde inhibited cellobiohydrolases. Pectinolytic activity, instead, was improved in the presence of p-coumaric acid, trans-ferulic acid, and syringaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Limayem, A., Ricke, S.C.: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38, 449–467 (2012). https://doi.org/10.1016/j.pecs.2012.03.002

    Article  Google Scholar 

  2. Ferreira-Leitao, V., Gottschalk, L.M.F., Ferrara, M.A., Nepomuceno, A.L., Molinari, H.B.C., Bon, E.P.S.: Biomass residues in Brazil: Availability and potential uses. Waste Biomass Valoriz. 1, 65–76 (2010). https://doi.org/10.1007/s12649-010-9008-8

    Article  Google Scholar 

  3. Soccol C.R., Vandenberghe L.P., Medeiros A.B., Karp S.G., Buckeridge M, Ramos L.P., Pitarelo A.P., Ferreira-Leitão V, Gottschalk L.M., Ferrara MA, da Silva Bon E.P., de Moraes L.M., Araújo Jde A, Torres F.A.: Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. 101, 4820–4825 (2010). https://doi.org/10.1016/j.biortech.2009.11.067

    Article  Google Scholar 

  4. Demain, A.L.: Biosolutions to the energy problem. J. Ind. Microbiol. Biotechnol. 36, 319–332 (2009). https://doi.org/10.1007/s10295-008-0521-8

    Article  Google Scholar 

  5. Strassberger, Z., Tanase, S., Rothenberg, G.: The pros and cons of lignin valorisation in an integrated biore fi nery. RSC Adv. 25310–25318 (2014). https://doi.org/10.1039/c4ra04747h

  6. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003). https://doi.org/10.1007/s10295-003-0049-x

    Article  Google Scholar 

  7. Anwar, Z., Gulfraz, M., Irshad, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7, 163–173 (2014). https://doi.org/10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  8. Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46, 541–549 (2010). https://doi.org/10.1016/j.enzmictec.2010.03.010

    Article  Google Scholar 

  9. Gilbert, H.J., Hazlewood, G.P.: Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187–194 (1993). https://doi.org/10.1099/00221287-139-2-187

    Article  Google Scholar 

  10. Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001). https://doi.org/10.1007/s002530100704

    Article  Google Scholar 

  11. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005). https://doi.org/10.1007/s00253-005-1904-7

    Article  Google Scholar 

  12. Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005). https://doi.org/10.1016/j.procbio.2005.03.026

    Article  Google Scholar 

  13. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77, 215–227 (2001). https://doi.org/10.1016/S0960-8524(00)00118-8

    Article  Google Scholar 

  14. Adeleke, A.J., Odunfa, S.A., Olanbiwonninu, A., Owoseni, M.C.: Production of cellulase and pectinase from orange peels by fungi\n. Nat. Sci. 10, 107–112 (2012)

    Google Scholar 

  15. Forsberg, Z., Mackenzie, A.K., Sørlie, M., Røhr, ÅK., Helland, R., Arvai, A.S., Vaaje-Kolstad, G., Eijsink, V.G.H.: Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA. 111, 8446–8451 (2014). https://doi.org/10.1073/pnas.1402771111

    Article  Google Scholar 

  16. Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P., Yaguchi, M.: Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2’-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61, 1876–1880 (1995)

    Article  Google Scholar 

  17. Ibrahim, V., Mendoza, L., Mamo, G., Hatti-Kaul, R.: Blue laccase from Galerina sp.: properties and potential for kraft lignin demethylation. Process Biochem. 46, 379–384 (2011). https://doi.org/10.1016/j.procbio.2010.07.013

    Article  Google Scholar 

  18. Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., Penttilä, M.: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269, 4202–4211 (2002). https://doi.org/10.1046/j.1432-1033.2002.03095.x

    Article  Google Scholar 

  19. Ertan, F., Balkan, B., Balkan, S., Aktac, T.: Solid state fermentation for the production of α -amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate. 657–661 (2006). https://doi.org/10.2478/s11756-006-0137-2

  20. Ferrer, M., Plou, F.J., Nuero, O.M., Reyes, F., Ballesteros, A.: Purification and properties of a lipase from Penicillium chrysogenum isolated from industrial wastes. J. Chem. Technol. Biotechnol. 75, 569–576 (2000). https://doi.org/10.1002/1097-4660(200007)75:7%3C569::AID-JCTB258%3E3.0.CO;2-S

    Article  Google Scholar 

  21. Nwodo, S.C., Uzoma, A.O., Thompson, N.E., Victoria, I.O.: Xylanase production of Aspergillus niger and Penicillium chrysogenum from ammonia pretreated cellulosic waste. Res. J. Microbiol. 3(4), 246–253 (2008)

    Google Scholar 

  22. Vangulik, W.M., Antoniewicz, M.R., Delaat, W.T.A.M., Vinke, J.L., Heijnen, J.J.: Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol. Bioeng. 72, 185–193 (2001). https://doi.org/10.1002/1097-0290(20000120)72:2%3C185::AID-BIT7%3E3.0.CO;2-M

    Article  Google Scholar 

  23. Backus, M.P., Stauffer, J.F., Johnson, M.J.: Penicillin yields from new mold strains. J. Am. Chem. Soc. 68, 152–153 (1946). https://doi.org/10.1021/ja01205a518

    Article  Google Scholar 

  24. Yang, Y., Yang, J., Liu, J., Wang, R., Liu, L., Wang, F., Yuan, H.: The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis. Bioresour. Technol. 257, 54–61 (2018). https://doi.org/10.1016/j.biortech.2018.02.028

    Article  Google Scholar 

  25. Duarte, G., Moreira, L., Gómez-Mendoza, D., Siqueira, F.G., De Batista, L., Amaral, L., Ricart, C., Filho, E.: Use of Residual biomass from the textile industry as carbon source for production of a low-molecular-weight xylanase from Aspergillus oryzae. Appl. Sci. 2, 754–772 (2012). https://doi.org/10.3390/app2040754

    Article  Google Scholar 

  26. Miller, G.L.: Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Anal. Chem. 3, 426–428 (1959)

    Article  Google Scholar 

  27. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  28. Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M.: Inhibition of cellulases by phenols. Enzyme Microb. Technol. 48, 54–60 (2011). https://doi.org/10.1016/j.enzmictec.2010.09.006

    Article  Google Scholar 

  29. Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M.: Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48, 54–60 (2011). https://doi.org/10.1016/j.enzmictec.2010.09.006

    Article  Google Scholar 

  30. De S. Moreira L.R., De Carvalho Campos, M., De Siqueira, P.H., Silva, L.P., Ricart, C.A., Martins, P.A., Queiroz, R.M., Filho, E.X..: Two β-xylanases from Aspergillus terreus: characterization and influence of phenolic compounds on xylanase activity. Fungal Genet. Biol. 60, 46–52 (2013). https://doi.org/10.1016/j.fgb.2013.07.006

    Article  Google Scholar 

  31. LAEMMLI, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)

    Article  Google Scholar 

  32. Zhang, M., Su, R., Qi, W., He, Z.: Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes. 1407–1414 (2010). https://doi.org/10.1007/s12010-009-8602-3

  33. Goyal, A., Ghosh, B., Eveleigh, D.: Characteristics of fungal cellulases. Bioresour. Technol. 36, 37–50 (1991). https://doi.org/10.1016/0960-8524(91)90098-5

    Article  Google Scholar 

  34. Haas, H., Herfurth, E., Stöffler, G., Redl, B.: Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim. Biophys. Acta—Gen. Subj. 1117, 279–286 (1992). https://doi.org/10.1016/0304-4165(92)90025-P

    Article  Google Scholar 

  35. Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., Qu, Y.: Enzyme and microbial technology isolation and characterization of a ␤ -glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46, 444–449 (2010). https://doi.org/10.1016/j.enzmictec.2010.01.008

    Article  Google Scholar 

  36. Krogh, K.B.R.M., Harris, P.V., Olsen, C.L., Johansen, K.S., Hojer-pedersen, J., Borjesson, J., Olsson, L.: Characterization and kinetic analysis of a thermostable GH3 β -glucosidase from Penicillium brasilianum. 143–154 (2010). https://doi.org/10.1007/s00253-009-2181-7

  37. Terrone, C.C., Freitas, C., De, Rafael, C., Terrasan, F., Almeida, A.F., De Carmona, E.C.: Agroindustrial biomass for xylanase production by Penicillium chrysogenum: purification, biochemical properties and hydrolysis of hemicelluloses. Electron. J. Biotechnol. 33, 1–7 (2018). https://doi.org/10.1016/j.ejbt.2018.04.001

    Article  Google Scholar 

  38. Sakamoto, T., Kawasaki, H.: Purification and properties of two type-B a-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1621, 204–210 (2003). https://doi.org/10.1016/S0304-4165(03)00058-8

    Article  Google Scholar 

  39. Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., Beg, Q.: Microbial alkaline pectinases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 59, 409–418 (2002). https://doi.org/10.1007/s00253-002-1061-1

    Article  Google Scholar 

  40. Alafia, A., Llama, M.J.: Purification and some properties of the pectin lyase from Penicillhtm italicum. 2, 335–340 (1991)

  41. Narra, M., Dixit, G., Divecha, J., Kumar, K., Madamwar, D., Shah, A.R.: Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int. Biodeterior. Biodegrad. 88, 150–161 (2014). https://doi.org/10.1016/j.ibiod.2013.12.016

    Article  Google Scholar 

  42. Johnson, E.A., Demain, A.L.: Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum. Arch. Microbiol. 137, 135–138 (1984)

    Article  Google Scholar 

  43. Akiba, S., Kimura, Y., Yamamoto, K., Kumagai, H.: Purification and characterization of a protease-resistant cellulase from Aspergillus niger. J. Ferment. Bioeng. 79, 125–130 (1995)

    Article  Google Scholar 

  44. Sposina, R., Teixeira, S., Souza, M.V., De Ximenes, E., Filho, F.: Purification and characterization studies of a thermostable b -xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol 37, 1041–1051 (2010). https://doi.org/10.1007/s10295-010-0751-4

    Article  Google Scholar 

  45. Tejirian, A., Xu, F.: Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76, 7673–7682 (2010). https://doi.org/10.1128/AEM.01376-10

    Article  Google Scholar 

  46. Xu, F., Ding, H., Tejirian, A.: Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb. Technol. 45, 203–209 (2009). https://doi.org/10.1016/j.enzmictec.2009.06.002

    Article  Google Scholar 

  47. Davies, G., Henrissat, B.: Structures and mechanisms of glycosyl hydrolases. Structure. 3, 853–859 (1995). https://doi.org/10.1016/S0969-2126(01)00220-9

    Article  Google Scholar 

  48. Tejirian, A., Xu, F.: Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb. Technol. 48, 239–247 (2011). https://doi.org/10.1016/j.enzmictec.2010.11.004

    Article  Google Scholar 

  49. Yaoi, K., Kondo, H., Hiyoshi, A., Noro, N., Sugimoto, H., Tsuda, S., Mitsuishi, Y., Miyazaki, K.: The Structural basis for the exo-mode of Action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J. Mol. Biol. 370, 53–62 (2007). https://doi.org/10.1016/j.jmb.2007.04.035

    Article  Google Scholar 

  50. Cannella, D., Hsieh, C.W.C., Felby, C., Jørgensen, H.: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol. Biofuels. 5, 1–10 (2012). https://doi.org/10.1186/1754-6834-5-26

    Article  Google Scholar 

  51. Vieira, W.B., Rios, L., Moreira, D.S., Neto, A.M., Ximenes, E., Filho, F.: Production and Characterization of an Enzyme Complex From a New Strain of Clostridium Thermocellum With Emphasis on Its Xylanase Activity. Braz. J. Microbiol. 38, 237–242 (2007)

    Article  Google Scholar 

  52. Yu, P., Xu, C.: Production optimization, purification and characterization of a heat-tolerant acidic pectinase from Bacillus sp. ZJ1407. Int. J. Biol. Macromol. 108, 972–980 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.012

    Article  Google Scholar 

  53. Monti, A., Di Virgilio, N., Venturi, G.: Mineral composition and ash content of six major energy crops. Biomass Bioenergy. 32, 216–223 (2008). https://doi.org/10.1016/j.biombioe.2007.09.012

    Article  Google Scholar 

  54. Wu, H.S., Wang, Y., Zhang, C.Y., Bao, W., Ling, N., Liu, D.Y., Shen, Q.R.: Growth of in vitro Fusarium oxysporum f. sp. niveum in chemically defined media amended with gallic acid. Biol. Res. 42, 297–304 (2009). https://doi.org/10.4067/S0716-97602009000300004

    Article  Google Scholar 

  55. Duarte, G.C., Moreira, L.R.S., Jaramillo, P.M.D., Filho, E.X.F.: Biomass-derived inhibitors of holocellulases. Bioenergy Res. 5, 768–777 (2012). https://doi.org/10.1007/s12155-012-9182-6

    Article  Google Scholar 

  56. Silva, C., de O.G., Aquino, Ricart, E.N., Midorikawa, C.A.O., Miller, G.E.O., Filho, R.N.G.: E.X.F.: GH11 xylanase from emericella nidulans with low sensitivity to inhibition by ethanol and lignocellulose-derived phenolic compounds. FEMS Microbiol. Lett. 362, 1–8 (2015). https://doi.org/10.1093/femsle/fnv094

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the University of Brasilia – UnB, CNPq, and FAPDF. Eliane F. Noronha is recipient of Brazilian Research Council (CNPq) research scholarship. Pedro R.V Hamann, and Alonso R.P. Ticona are recipient of CAPES doctoral degree scholarship, Sadia F. Ullah is the recipient of CNPq doctoral’s degree scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. V. Hamann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.d.M.B., Gomes, T.C., Ullah, S.F. et al. Biochemical Properties of Carbohydrate-Active Enzymes Synthesized by Penicillium chrysogenum Using Corn Straw as Carbon Source. Waste Biomass Valor 11, 2455–2466 (2020). https://doi.org/10.1007/s12649-019-00589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00589-x

Keywords

Navigation