Physical and Chemical Properties of the Agro-processing By-products Decomposed by Larvae of Musca domestica and Hermetia illucens

  • A. Y. Bloukounon-GoubalanEmail author
  • A. Saïdou
  • C. A. A. M. Chrysostome
  • M. Kenis
  • G. L. Amadji
  • A. M. Igué
  • G. A. Mensah
Original Paper


The present study aimed to assess the physical and chemical properties of the agro-processing by-products decomposed by fly larvae and to be promoted as soil amendment. The biodegradation process was performed using larvae of Musca domestica and Hermetia illucens during 30 days on corn bran, a mixture of soybean bran and corn bran (1:1 ratio), and a mixture of soybean bran and corn hull (8:2 ratio). The biodegradation by fly larvae was obtained by exposed the substrates to naturally-occurring flies. Data on temperature, pH, fly larvae production, substrate weight, organic carbon, total nitrogen, nitrite and ammonia contents in the substrates were collected during the biodegradation process. Temperature ranged between 33 and 45 °C during the process and was higher in the mixture of soybean bran and corn hull while pH changed from neutral to alkaline. The substrate weight was reduced and a low carbon loss was recorded. The mixture of soybean bran and corn hull produced the highest amounts of fly larvae (38.28 g kg−1 dry matter). Significant reductions (p < 0.05) of total nitrogen, ammonia and nitrite contents were recorded in the substrates. An increase of nitrite content in corn bran and in the mixture of soybean bran and corn bran starting from day 12 was observed. The final products of the biodegradation have a high total N content (from 53.75 ± 1.35 to 55.85 ± 0.87 g kg−1) and provide suitable C:N and NH4-N:NO3-N ratios, suggesting that they can be used as high quality soil amendment.


Soil fertility Biodegradation Organic residues quality Crops’ residues Benin 



This study was made in the framework of the project IFWA—Sustainable use of insects to improve livestock production and food security in smallholder farms in West Africa, funded by the Swiss Agency for Development and Cooperation and the Swiss National Science Foundation, in the framework of the Swiss Programme for Research on Global Issues for Development (R4D). MK was partly funded though the CABI Development Fund (supported by contributions from the Australian Centre for International Agricultural Research, the UK’s Department for International Development, and others).


  1. 1.
    CountryStat.: Benin. Food and Agriculture data network (2017).
  2. 2.
    FAO.: Crop residues and agro-industrial by-products in West Africa: Situation and way forward for livestock production. FAO regional office for Africa Accra (2014)Google Scholar
  3. 3.
    Rose, D.J., Inglett, G.E., Liu, S.X.: Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. J. Sci. Food Agric. 90, 915–924 (2010)Google Scholar
  4. 4.
    Ali, G., Nitivattananon, V., Abbas, S., Sabir, M.: Green waste to biogas: renewable energy possibilities for Thailands green markets. Renew. Sustain. Energy Rev. 16, 5423–5429 (2012)CrossRefGoogle Scholar
  5. 5.
    Zakir-Hossain, H., Hasna-Hossain, M., Uddin-Monir, Q.M.M., Ahmed, M.T.: Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: revisited. Renew. Sustain. Energy Rev. 39, 35–41 (2014)CrossRefGoogle Scholar
  6. 6.
    Paul, J., Sierra, J., Causeret, F., Guindé, L., Blazy, J.: Factors affecting the adoption of compost use by farmers in small tropical Caribbean islands. J. Clean. Prod. 142, 1387–1396 (2017)CrossRefGoogle Scholar
  7. 7.
    Pomalégni, S.C.B., Gbemavo, D.S.J.C., Kpadé, C.P., Babatoundé, S., Chrysostome, C.A.A.M., Koudandé, O.D., Kenis, M., Glèlé Kakaï, R.L., Mensah, G.A.: Perceptions et facteurs déterminant l’utilisation des asticots dans l’alimentation des poulets locaux (Gallus gallus) au Bénin. J. Appl. Biosci. 98, 9330–9343 (2016)CrossRefGoogle Scholar
  8. 8.
    Bloukounon, A.Y.G., Saïdou, A., Babatoundé, S., Balogoun, I., Arakogné, S., Kassavi, E., Adegbidi, A.: Effets des fumures NPK et déjections de petits ruminants sur la productivité et la valeur fourragère du maïs et de l’arachide au Sud-Bénin. Ann. des Sci. Agron. 19(2), 213–238 (2015)Google Scholar
  9. 9.
    Saïdou, A., Janssen, B., Temminghoff, E.J.M.: Effects of soil properties, mulch and NPK fertilizer on corn yields and nutrient budgets on ferralitic soils in southern Benin. Agric. Ecosyst. Environ. 100, 265–273 (2003)CrossRefGoogle Scholar
  10. 10.
    Bouafou, K.G.M.: Etude de la production d’asticots à partir d’ordures ménagères et de la valeur nutritionnelle de la farine d’asticots séchés (FAS) chez le rat en croissance, Côte d’Ivoire, p. 99. Université de Cocody, Thèse de doctorat (2007)Google Scholar
  11. 11.
    Lavelle, P., Blanchart, E., Martin, A., Spain, A.V., Martin, S.: Impact of soil fauna on the properties of soils in the humid tropics. Soil Science Society of America and American Society of Agronomy. 677, Publication N°29 (1992)Google Scholar
  12. 12.
    Bloukounon-Goubalan, A.Y., Saïdou, A., Togbé, E., Chabi, F., Babatounde, S., Chrysostome, C., Kenis, M., Mensah, G.A.: Physical and chemical properties of animals’ organic residues decomposed by Musca domestica and Calliphora vomitaria fly larvae. J. Agric. Environ. Sci. 6(1), 92–104 (2017)Google Scholar
  13. 13.
    Diener, S., Studt-Solano, N.M., Roa-Gutiérrez, F., Zurbrügg, C., Tockner, K.: Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valor. 2, 357–363 (2011)CrossRefGoogle Scholar
  14. 14.
    IFWA.: Etude de référence du projet Insect as Feed in West Africa: Rapport Technique de Recherche et Développement. Dépôt légal N°9103, 4ème trimestre, Bibliothèque Nationale du Bénin, p. 64 (2016)Google Scholar
  15. 15.
    Myers, H.M., Tomberlin, J.K., Lambert, B.D., Kattes, D.: Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 37(1), 11–15 (2008)CrossRefGoogle Scholar
  16. 16.
    Bernal, M.P., Paredes, C., Sánchez-Monedero, M.A., Cegarra, J.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Biores. Technol. 63, 91–99 (1998)CrossRefGoogle Scholar
  17. 17.
    Zeng, G., Yu, Z., Chen, Y., Zhang, J., Li, H., Yu, M., Zhao, M.: Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Biores. Technol. 102, 5905–5911 (2011)CrossRefGoogle Scholar
  18. 18.
    Novinsak, A., Surette, C., Allain, C., Filion, M.: Application of molecular technologies to monitor the microbial content of biosolids and composted biosolids. Water Sci. Technol. 57, 471–477 (2008)CrossRefGoogle Scholar
  19. 19.
    Schloss, P.D., Hay, A.G., Wilson, D.B., Walker, L.P.: Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 46, 1–9 (2003)CrossRefGoogle Scholar
  20. 20.
    Tschirner, M., Simon, A.: Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 1(4), 249–259 (2015)CrossRefGoogle Scholar
  21. 21.
    Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Biores. Technol. 100, 5444–5453 (2009)CrossRefGoogle Scholar
  22. 22.
    Maheshwari, D.K.: Composting for Sustainable Agriculture. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Wang, S., Li, H., Wang, B., Zhou, Q., Zhang, X., Li, J., Zhang, Z.: Decomposition and humification of dissolved organic matter in swine manure during housefly larvae composting. Waste Manag. Res. 34(5), 465–473 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhu, F., Yao, Y., Wang, S., Du, R., Wang, W., Chen, X., Hong, C., Qi, B., Xue, Z., Yang, H.: Housefly maggot-treated composting as sustainable option for pig manure management. Waste Manag. 35, 62–67 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhu, F., Wang, W., Hong, C., Feng, M., Xue, Z., Chen, X., Yao, Y., Yu, M.: Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure. Biores. Technol. 116, 485–491 (2012)CrossRefGoogle Scholar
  26. 26.
    Saragi, E.S., Bagastyo, A.Y.: Reduction of organic solid waste by black soldier fly (Hermetia illucens) larvae. The 5th Environmental Technology and Management Conference “Green Technology towards Sustainable Environment” November 23–24, 2015, Bandung (2015)Google Scholar
  27. 27.
    Čičková, H., Newton, L.G., Lacy, C.R., Kozánek, M.: The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80 (2015)CrossRefGoogle Scholar
  28. 28.
    Place, F., Barrett, C.B., Freeman, H.A., Ramisch, J.J., Vanlauwe, B.: Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy 28, 365–378 (2003)CrossRefGoogle Scholar
  29. 29.
    Iñiguez-Covarrubias, G., Franco-Gömez, J., Andrade-Maldonado, R.: Biodegradation of swine waste by house-fly larvae and evaluation of their protein quality in rats. J. Appl. Anim. Res. 6, 65–74 (1994)CrossRefGoogle Scholar
  30. 30.
    Kodjo, S., Adjanohoun, A., Akondé, T.P., Aïhou, K., Kpagbin, G., Gotoechan, H., Igue, A.M.: Diagnostic participatif de la fertilité des sols des exploitations agricoles à base de maïs (Zea mays) dans les départements du Zou et des Collines au Bénin. Bulletin de la Recherche Agronomique du Bénin, Numéro spécial Fertilité du maïs. 39–53 (2013)Google Scholar
  31. 31.
    Wu, L., Ma, L.Q., Martinez, G.A.: Comparison of methods for evaluating stability and maturity of biosolids compost. J. Environ. Qual. 29(2), 424 (2000)CrossRefGoogle Scholar
  32. 32.
    Cooperband, L.R., Stone, A.G., Fryda, M.R., Ravet, J.L.: Relating compost measures of stability and maturity to plant growth. Compost Sci. Util. 11(2), 113–124 (2003)CrossRefGoogle Scholar
  33. 33.
    Epstein, E., Chaney, R.L., Henry, C., Logan, T.J.: Trace elements in municipal solid waste compost. Biomass Bioenergy. 3(3–4), 227–238 (1992)CrossRefGoogle Scholar
  34. 34.
    Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y.: Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37(11), 2109–2116 (2005)CrossRefGoogle Scholar
  35. 35.
    Benny, C.: Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 25(4), 776 (1996)CrossRefGoogle Scholar
  36. 36.
    Namkoong, W., Hwang, E.Y., Cheong, J.G., Choi, J.Y.: A comparative evaluation of maturity parameters for food waste composting. Compost Sci. Util. 7(2), 55–62 (1999)CrossRefGoogle Scholar
  37. 37.
    Rosen, C.J., Halbach, T.R., Swanson, B.T.: Horticultural uses of municipal solid waste composts. HortTechnology 3(2), 167–173 (1993)CrossRefGoogle Scholar
  38. 38.
    Ding, W., Luo, J., Li, J., Yu, H., Fan, J., Liu, D.: Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Sci. Total Environ. 465, 115–124 (2013)CrossRefGoogle Scholar
  39. 39.
    Cai, Y., Ding, W., Luo, J.: Nitrous oxide emissions from Chinese corn-wheat rotation systems: a 3-year field measurement. Atmos. Environ. 65, 112–122 (2013)CrossRefGoogle Scholar
  40. 40.
    Powlson, D.S., Hirsch, P.R., Brookes, P.C.: The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosystems 61, 41 (2001)CrossRefGoogle Scholar
  41. 41.
    Woods End Research Laboratory: Interpretation of waste and compost tests. J. Woods End Res. Lab. 1, 4 (2000)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Unit of Integrated Soil and Crops Management, Laboratory of Soil Sciences, School of Crop Production, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Laboratory of Aviculture and Zoo-Economy Research, School of Animal Production, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  3. 3.CABIDelémontSwitzerland
  4. 4.Research Unit of Eco-Pedology, Laboratory of Soil Sciences, School of Crop Production, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  5. 5.Laboratory of Soil Sciences, Water and Environment, Center of Agriculture Research of Agonkanmey (CRA-Agonkanmey)Benin National Institute of Agriculture ResearchesCotonouBenin
  6. 6.Laboratory of Zootechny, Veterinary and Fishery Researches, Center of Agriculture Research of Agonkanmey (CRA-Agonkanmey)Benin National Institute of Agriculture ResearchesCotonouBenin

Personalised recommendations