Skip to main content

Advertisement

Log in

The Challenges of Using Organic Municipal Solid Waste as Source of Secondary Raw Materials

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The diversity of molecules with different functionalizations allows targeting of various end products, such as biomaterials, biobased plasticizer, food additives and fertilizer. The heterogeneity of organic municipal solid waste (OMSW) streams, however, challenges the formulation of reliable statements regarding the share of functionalized molecules. The aim of this study was the assessment of OMSW as source of functionalized molecules when hydrolysis was carried out enzymatically, thermo-chemically as well as thermo-chemically and enzymatically. Results revealed that OMSW is only quantitatively assessable at carbohydrate, protein and lipid levels. This is due to a changing seasonal and spacial composition, and consequently different hydrolytic products. However, also the treatment had an impact on the quantity. Depending on the treatment 230–640 mg g−1 carbohydrates, 150–250 mg g−1 lipids and 80–200 mg g−1 proteins were quantified in food waste and organic street waste. The intensity of treatment had an impact on the quality of sugars. When wastes were treated enzymatically glucose, fructose and sucrose were found. Using thermochemical treatment glucose can be the only product. Contrarily, lipid and fatty acid as well as protein contents seemed not affected by the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

FAN:

Free amino nitrogen

HPLC:

High performance liquid chromatography

Nd:

Not detected

OMSW:

Organic municipal solid waste

U:

Enzyme units

Total-C:

Total-carbon content

Total-N:

Total-nitrogen content

References

  1. Pleissner, D.: How can sustainable chemistry contribute to a circular economy? Detritus J. 3, 4–6 (2018). https://doi.org/10.31025/2611-4135/2018.13694

    Article  Google Scholar 

  2. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  3. Pleissner, D.: Recycling and reuse of food waste. Curr. Opin. Green Sustain. Chem. 13, 39–43 (2018). https://doi.org/10.1016/j.cogsc.2018.03.014

    Article  Google Scholar 

  4. Campuzano, R., González-Martínez, S.: Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 54, 3–12 (2016). https://doi.org/10.1016/j.wasman.2016.05.016

    Article  Google Scholar 

  5. Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M.V., Kumar, A.N., Sarkar, O.: Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour. Technol. 215, 2–12 (2016). https://doi.org/10.1016/j.biortech.2016.03.130

    Article  Google Scholar 

  6. Pleissner, D., Lau, K.Y., Schneider, R., Venus, J., Lin, C.S.K.: Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res. Int. 73, 52–61 (2015). https://doi.org/10.1016/j.foodres.2014.11.048

    Article  Google Scholar 

  7. Pleissner, D., Lam, W.C., Han, W., Lau, K.Y., Cheung, L.C., Lee, M.W., Lei, H.M., Lo, K.Y., Ng, W.Y., Sun, Z., Melikoglu, M., Lin, C.S.K.: Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste. Biomed. Res. Int. 2014, 8 (2014). https://doi.org/10.1155/2014/819474

    Article  Google Scholar 

  8. Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I.K., Papanikolaou, S., Kwan, T.H., Lin, C.S.K.: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem. Soc. Rev. 43(8), 2587–2627 (2014). https://doi.org/10.1039/C3CS60293A

    Article  Google Scholar 

  9. Pleissner, D., Kwan, T.H., Lin, C.S.K.: Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour. Technol. 158, 48–54 (2014). https://doi.org/10.1016/j.biortech.2014.01.139

    Article  Google Scholar 

  10. Demichelis, F., Fiore, S., Pleissner, D., Venus, J.: Technical and economic assessment of food waste valorization through a biorefinery chain. Renew. Sustain. Energy Rev. 94, 38–48 (2018). https://doi.org/10.1016/j.rser.2018.05.064

    Article  Google Scholar 

  11. Dahiya, S., Kumar, A.N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., Mohan, S.V.: Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 248, 2–12 (2018). https://doi.org/10.1016/j.biortech.2017.07.176

    Article  Google Scholar 

  12. Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., Pant, D.: Waste biorefineries: enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017). https://doi.org/10.1016/j.biortech.2017.05.097

    Article  Google Scholar 

  13. Yang, X., Choi, H.S., Park, C., Kim, S.W.: Current states and prospects of organic waste utilization for biorefineries. Renew. Sustain. Energy Rev. 49, 335–349 (2015). https://doi.org/10.1016/j.rser.2015.04.114

    Article  Google Scholar 

  14. Mariotti, F., Tomé, D., Mirand, P.P.: Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 48(2), 177–184 (2008). https://doi.org/10.1080/10408390701279749

    Article  Google Scholar 

  15. Lie, S.: The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79(1), 37–41 (1973). https://doi.org/10.1002/j.2050-0416.1973.tb03495.x doi

    Article  Google Scholar 

  16. Pleissner, D., Wimmer, R., Eriksen, N.T.: Quantification of amino acids in fermentation media by isocratic HPLC analysis of their α-hydroxy acid derivatives. Anal. Chem. 83(1), 175–181 (2011). https://doi.org/10.1021/ac1021908

    Article  Google Scholar 

  17. Ulusoy, S., Ulusoy, H.I., Pleissner, D., Eriksen, N.T.: Nitrosation and analysis of amino acid derivatives by isocratic HPLC. RSC Adv. 6(16), 13120–13128 (2016). https://doi.org/10.1039/C5RA25854E

    Article  Google Scholar 

  18. Alibardi, L., Cossu, R.: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 36, 147–155 (2015). https://doi.org/10.1016/j.wasman.2014.11.019

    Article  Google Scholar 

  19. Jimenez, J., Aemig, Q., Doussiet, N., Steyer, J.-P., Houot, S., Patureau, D.: A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization. Bioresour. Technol. 194, 344–353 (2015). https://doi.org/10.1016/j.biortech.2015.07.037

    Article  Google Scholar 

  20. Peris-Tortajada, M.: Measuring starch in food. In: Nilsson, L. (ed.) Starch in Food, 2nd edn., pp. 255–281. Woodhead Publishing, Cambridge (2018)

    Chapter  Google Scholar 

  21. Idan, C., Michel, B., Maria, G.A., Roberto, A., Johann, G.: Spent coffee ground mass solubilisation by steam explosion and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 90(3), 449–458 (2015). https://doi.org/10.1002/jctb.4313 doi

    Article  Google Scholar 

  22. Sun, Y., Cheng, J.J.: Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96(14), 1599–1606 (2005). https://doi.org/10.1016/j.biortech.2004.12.022

    Article  Google Scholar 

  23. Qi, L., Mui, Y.F., Lo, S.W., Lui, M.Y., Akien, G.R., Horváth, I.T.: Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal. 4(5), 1470–1477 (2014). https://doi.org/10.1021/cs401160y

    Article  Google Scholar 

  24. Qiao, Y., Theyssen, N., Hou, Z.: Acid-catalyzed dehydration of fructose to 5-(hydroxymethyl)furfural. Recycl. Catal. 2, 36–60 (2015)

    Google Scholar 

  25. Browne, J.D., Allen, E., Murphy, J.D.: Improving hydrolysis of food waste in a leach bed reactor. Waste Manag. 33(11), 2470–2477 (2013). https://doi.org/10.1016/j.wasman.2013.06.025

    Article  Google Scholar 

  26. Kim, H.-W., Nam, J.-Y., Kang, S.-T., Kim, D.-H., Jung, K.-W., Shin, H.-S.: Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes. Bioresour. Technol. 110, 130–134 (2012). https://doi.org/10.1016/j.biortech.2012.01.146

    Article  Google Scholar 

  27. Li, Y., Jin, Y., Borrion, A., Li, H., Li, J.: Effects of organic composition on the anaerobic biodegradability of food waste. Bioresour. Technol. 243, 836–845 (2017). https://doi.org/10.1016/j.biortech.2017.07.028

    Article  Google Scholar 

  28. Li, Y., Jin, Y., Borrion, A., Li, H., Li, J.: Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour. Technol. 244, 213–224 (2017). https://doi.org/10.1016/j.biortech.2017.07.006

    Article  Google Scholar 

  29. Li, Y., Jin, Y., Li, J., Li, H., Yu, Z., Nie, Y.: Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 118, 377–386 (2017). https://doi.org/10.1016/j.energy.2016.12.041

    Article  Google Scholar 

  30. Mahmoodi, P., Karimi, K., Taherzadeh, M.J.: Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Convers. Manag. 166, 569–578 (2018). https://doi.org/10.1016/j.enconman.2018.04.067

    Article  Google Scholar 

  31. Uke, M.N., Stentiford, E.: Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle. Waste Manag. 33(6), 1425–1433 (2013). https://doi.org/10.1016/j.wasman.2013.02.020

    Article  Google Scholar 

  32. Zhang, B., He, P., Lü, F., Shao, L., Wang, P.: Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Res. 41(19), 4468–4478 (2007). https://doi.org/10.1016/j.watres.2007.06.061

    Article  Google Scholar 

  33. Li, Y., Jin, Y., Li, J.: Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste. Energy 102, 139–147 (2016). https://doi.org/10.1016/j.energy.2016.02.080

    Article  Google Scholar 

  34. Murphy, B.M., Xu, B.: Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Prog. Energy Combust. Sci. 67, 1–30 (2018). https://doi.org/10.1016/j.pecs.2018.01.003

    Article  Google Scholar 

  35. Chen, K., Luo, G., Lei, Z., Zhang, Z., Zhang, S., Chen, J.: Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. Sep. Purif. Technol. 195, 288–294 (2018). https://doi.org/10.1016/j.seppur.2017.12.030

    Article  Google Scholar 

  36. Morthensen, S.T., Luo, J., Meyer, A.S., Jørgensen, H., Pinelo, M.: High performance separation of xylose and glucose by enzyme assisted nanofiltration. J. Membr. Sci. 492, 107–115 (2015). https://doi.org/10.1016/j.memsci.2015.05.025

    Article  Google Scholar 

  37. Lyu, H., Chen, K., Yang, X., Younas, R., Zhu, X., Luo, G., Zhang, S., Chen, J.: Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction. Sep. Purif. Technol. 147, 276–283 (2015). https://doi.org/10.1016/j.seppur.2015.04.032

    Article  Google Scholar 

  38. Malmali, M., Stickel, J.J., Wickramasinghe, S.R.: Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep. Purif. Technol. 132, 655–665 (2014). https://doi.org/10.1016/j.seppur.2014.06.014

    Article  Google Scholar 

  39. Chen, K., Hao, S., Lyu, H., Luo, G., Zhang, S., Chen, J.: Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. Sep. Purif. Technol. 172, 100–106 (2017). https://doi.org/10.1016/j.seppur.2016.08.004

    Article  Google Scholar 

  40. Suwal, S., Roblet, C., Doyen, A., Amiot, J., Beaulieu, L., Legault, J., Bazinet, L.: Electrodialytic separation of peptides from snow crab by-product hydrolysate: effect of cell configuration on peptide selectivity and local electric field. Sep. Purif. Technol. 127, 29–38 (2014). https://doi.org/10.1016/j.seppur.2014.02.018

    Article  Google Scholar 

  41. Suwal, S., Roblet, C., Amiot, J., Doyen, A., Beaulieu, L., Legault, J., Bazinet, L.: Recovery of valuable peptides from marine protein hydrolysate by electrodialysis with ultrafiltration membrane: impact of ionic strength. Food Res. Int. 65, 407–415 (2014). https://doi.org/10.1016/j.foodres.2014.06.031

    Article  Google Scholar 

  42. BMELV, BMU, B.M.B.F. BMWI: Biorefineries roadmap. In., p. 108. https://www.bmbf.de/pub/Roadmap_Biorefineries_eng.pdf (2012)

Download references

Acknowledgements

The authors acknowledge the Studienstiftung des deutschen Volkes and the Max Buchner Research Foundation (Project Number: 3579, DECHEMA, Frankfurt, Germany) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pleissner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleissner, D., Peinemann, J.C. The Challenges of Using Organic Municipal Solid Waste as Source of Secondary Raw Materials. Waste Biomass Valor 11, 435–446 (2020). https://doi.org/10.1007/s12649-018-0497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0497-1

Keywords