Abstract
The diversity of molecules with different functionalizations allows targeting of various end products, such as biomaterials, biobased plasticizer, food additives and fertilizer. The heterogeneity of organic municipal solid waste (OMSW) streams, however, challenges the formulation of reliable statements regarding the share of functionalized molecules. The aim of this study was the assessment of OMSW as source of functionalized molecules when hydrolysis was carried out enzymatically, thermo-chemically as well as thermo-chemically and enzymatically. Results revealed that OMSW is only quantitatively assessable at carbohydrate, protein and lipid levels. This is due to a changing seasonal and spacial composition, and consequently different hydrolytic products. However, also the treatment had an impact on the quantity. Depending on the treatment 230–640 mg g−1 carbohydrates, 150–250 mg g−1 lipids and 80–200 mg g−1 proteins were quantified in food waste and organic street waste. The intensity of treatment had an impact on the quality of sugars. When wastes were treated enzymatically glucose, fructose and sucrose were found. Using thermochemical treatment glucose can be the only product. Contrarily, lipid and fatty acid as well as protein contents seemed not affected by the treatment.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- FAN:
-
Free amino nitrogen
- HPLC:
-
High performance liquid chromatography
- Nd:
-
Not detected
- OMSW:
-
Organic municipal solid waste
- U:
-
Enzyme units
- Total-C:
-
Total-carbon content
- Total-N:
-
Total-nitrogen content
References
Pleissner, D.: How can sustainable chemistry contribute to a circular economy? Detritus J. 3, 4–6 (2018). https://doi.org/10.31025/2611-4135/2018.13694
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). https://doi.org/10.1126/science.1114736
Pleissner, D.: Recycling and reuse of food waste. Curr. Opin. Green Sustain. Chem. 13, 39–43 (2018). https://doi.org/10.1016/j.cogsc.2018.03.014
Campuzano, R., González-Martínez, S.: Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 54, 3–12 (2016). https://doi.org/10.1016/j.wasman.2016.05.016
Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M.V., Kumar, A.N., Sarkar, O.: Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour. Technol. 215, 2–12 (2016). https://doi.org/10.1016/j.biortech.2016.03.130
Pleissner, D., Lau, K.Y., Schneider, R., Venus, J., Lin, C.S.K.: Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res. Int. 73, 52–61 (2015). https://doi.org/10.1016/j.foodres.2014.11.048
Pleissner, D., Lam, W.C., Han, W., Lau, K.Y., Cheung, L.C., Lee, M.W., Lei, H.M., Lo, K.Y., Ng, W.Y., Sun, Z., Melikoglu, M., Lin, C.S.K.: Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste. Biomed. Res. Int. 2014, 8 (2014). https://doi.org/10.1155/2014/819474
Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I.K., Papanikolaou, S., Kwan, T.H., Lin, C.S.K.: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem. Soc. Rev. 43(8), 2587–2627 (2014). https://doi.org/10.1039/C3CS60293A
Pleissner, D., Kwan, T.H., Lin, C.S.K.: Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour. Technol. 158, 48–54 (2014). https://doi.org/10.1016/j.biortech.2014.01.139
Demichelis, F., Fiore, S., Pleissner, D., Venus, J.: Technical and economic assessment of food waste valorization through a biorefinery chain. Renew. Sustain. Energy Rev. 94, 38–48 (2018). https://doi.org/10.1016/j.rser.2018.05.064
Dahiya, S., Kumar, A.N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., Mohan, S.V.: Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 248, 2–12 (2018). https://doi.org/10.1016/j.biortech.2017.07.176
Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., Pant, D.: Waste biorefineries: enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017). https://doi.org/10.1016/j.biortech.2017.05.097
Yang, X., Choi, H.S., Park, C., Kim, S.W.: Current states and prospects of organic waste utilization for biorefineries. Renew. Sustain. Energy Rev. 49, 335–349 (2015). https://doi.org/10.1016/j.rser.2015.04.114
Mariotti, F., Tomé, D., Mirand, P.P.: Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 48(2), 177–184 (2008). https://doi.org/10.1080/10408390701279749
Lie, S.: The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79(1), 37–41 (1973). https://doi.org/10.1002/j.2050-0416.1973.tb03495.x doi
Pleissner, D., Wimmer, R., Eriksen, N.T.: Quantification of amino acids in fermentation media by isocratic HPLC analysis of their α-hydroxy acid derivatives. Anal. Chem. 83(1), 175–181 (2011). https://doi.org/10.1021/ac1021908
Ulusoy, S., Ulusoy, H.I., Pleissner, D., Eriksen, N.T.: Nitrosation and analysis of amino acid derivatives by isocratic HPLC. RSC Adv. 6(16), 13120–13128 (2016). https://doi.org/10.1039/C5RA25854E
Alibardi, L., Cossu, R.: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 36, 147–155 (2015). https://doi.org/10.1016/j.wasman.2014.11.019
Jimenez, J., Aemig, Q., Doussiet, N., Steyer, J.-P., Houot, S., Patureau, D.: A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization. Bioresour. Technol. 194, 344–353 (2015). https://doi.org/10.1016/j.biortech.2015.07.037
Peris-Tortajada, M.: Measuring starch in food. In: Nilsson, L. (ed.) Starch in Food, 2nd edn., pp. 255–281. Woodhead Publishing, Cambridge (2018)
Idan, C., Michel, B., Maria, G.A., Roberto, A., Johann, G.: Spent coffee ground mass solubilisation by steam explosion and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 90(3), 449–458 (2015). https://doi.org/10.1002/jctb.4313 doi
Sun, Y., Cheng, J.J.: Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96(14), 1599–1606 (2005). https://doi.org/10.1016/j.biortech.2004.12.022
Qi, L., Mui, Y.F., Lo, S.W., Lui, M.Y., Akien, G.R., Horváth, I.T.: Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal. 4(5), 1470–1477 (2014). https://doi.org/10.1021/cs401160y
Qiao, Y., Theyssen, N., Hou, Z.: Acid-catalyzed dehydration of fructose to 5-(hydroxymethyl)furfural. Recycl. Catal. 2, 36–60 (2015)
Browne, J.D., Allen, E., Murphy, J.D.: Improving hydrolysis of food waste in a leach bed reactor. Waste Manag. 33(11), 2470–2477 (2013). https://doi.org/10.1016/j.wasman.2013.06.025
Kim, H.-W., Nam, J.-Y., Kang, S.-T., Kim, D.-H., Jung, K.-W., Shin, H.-S.: Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes. Bioresour. Technol. 110, 130–134 (2012). https://doi.org/10.1016/j.biortech.2012.01.146
Li, Y., Jin, Y., Borrion, A., Li, H., Li, J.: Effects of organic composition on the anaerobic biodegradability of food waste. Bioresour. Technol. 243, 836–845 (2017). https://doi.org/10.1016/j.biortech.2017.07.028
Li, Y., Jin, Y., Borrion, A., Li, H., Li, J.: Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour. Technol. 244, 213–224 (2017). https://doi.org/10.1016/j.biortech.2017.07.006
Li, Y., Jin, Y., Li, J., Li, H., Yu, Z., Nie, Y.: Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 118, 377–386 (2017). https://doi.org/10.1016/j.energy.2016.12.041
Mahmoodi, P., Karimi, K., Taherzadeh, M.J.: Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Convers. Manag. 166, 569–578 (2018). https://doi.org/10.1016/j.enconman.2018.04.067
Uke, M.N., Stentiford, E.: Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle. Waste Manag. 33(6), 1425–1433 (2013). https://doi.org/10.1016/j.wasman.2013.02.020
Zhang, B., He, P., Lü, F., Shao, L., Wang, P.: Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Res. 41(19), 4468–4478 (2007). https://doi.org/10.1016/j.watres.2007.06.061
Li, Y., Jin, Y., Li, J.: Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste. Energy 102, 139–147 (2016). https://doi.org/10.1016/j.energy.2016.02.080
Murphy, B.M., Xu, B.: Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Prog. Energy Combust. Sci. 67, 1–30 (2018). https://doi.org/10.1016/j.pecs.2018.01.003
Chen, K., Luo, G., Lei, Z., Zhang, Z., Zhang, S., Chen, J.: Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. Sep. Purif. Technol. 195, 288–294 (2018). https://doi.org/10.1016/j.seppur.2017.12.030
Morthensen, S.T., Luo, J., Meyer, A.S., Jørgensen, H., Pinelo, M.: High performance separation of xylose and glucose by enzyme assisted nanofiltration. J. Membr. Sci. 492, 107–115 (2015). https://doi.org/10.1016/j.memsci.2015.05.025
Lyu, H., Chen, K., Yang, X., Younas, R., Zhu, X., Luo, G., Zhang, S., Chen, J.: Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction. Sep. Purif. Technol. 147, 276–283 (2015). https://doi.org/10.1016/j.seppur.2015.04.032
Malmali, M., Stickel, J.J., Wickramasinghe, S.R.: Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep. Purif. Technol. 132, 655–665 (2014). https://doi.org/10.1016/j.seppur.2014.06.014
Chen, K., Hao, S., Lyu, H., Luo, G., Zhang, S., Chen, J.: Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. Sep. Purif. Technol. 172, 100–106 (2017). https://doi.org/10.1016/j.seppur.2016.08.004
Suwal, S., Roblet, C., Doyen, A., Amiot, J., Beaulieu, L., Legault, J., Bazinet, L.: Electrodialytic separation of peptides from snow crab by-product hydrolysate: effect of cell configuration on peptide selectivity and local electric field. Sep. Purif. Technol. 127, 29–38 (2014). https://doi.org/10.1016/j.seppur.2014.02.018
Suwal, S., Roblet, C., Amiot, J., Doyen, A., Beaulieu, L., Legault, J., Bazinet, L.: Recovery of valuable peptides from marine protein hydrolysate by electrodialysis with ultrafiltration membrane: impact of ionic strength. Food Res. Int. 65, 407–415 (2014). https://doi.org/10.1016/j.foodres.2014.06.031
BMELV, BMU, B.M.B.F. BMWI: Biorefineries roadmap. In., p. 108. https://www.bmbf.de/pub/Roadmap_Biorefineries_eng.pdf (2012)
Acknowledgements
The authors acknowledge the Studienstiftung des deutschen Volkes and the Max Buchner Research Foundation (Project Number: 3579, DECHEMA, Frankfurt, Germany) for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pleissner, D., Peinemann, J.C. The Challenges of Using Organic Municipal Solid Waste as Source of Secondary Raw Materials. Waste Biomass Valor 11, 435–446 (2020). https://doi.org/10.1007/s12649-018-0497-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-018-0497-1


