Skip to main content
Log in

Carboxymethyl Cellulase Production by Extremotolerant Bacteria in Low-Cost Media and Application in Enzymatic Saccharification of Stevia Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize novel cellulase-producing bacteria isolated from desertic environments in Tunisia, and then applied for cellulosic ethanol production. In the first instance, 27 alkali-thermo-halotolerant bacterial strains, belonging to Bacillaceae family, were screened on agar plates containing carboxymethyl cellulose as the sole carbon source. The selected high cellulase producing bacteria were identified as Bacillus mojavensis AG21, Bacillus vallismortis J77, Bacillus sonorensis 7.26 and Bacillus safiensis AJ49. Production of cellulolytic enzymes by selected bacteria was further tested in submerged cultures with Posidonia oceanica leaves, Peganum Harmala biomass, Stevia rebaudiana leaves (SRL), Olive cake, Spent coffee ground and peanut hulls as low-cost cellulosic substrates. Response surface methodology was applied to evaluate the effect of SRL concentration, NaCl concentration, cultivation pH and temperature on carboxymethyl cellulase production and to optimize enzyme yields by selected bacteria. Maximum cellulase production yields of about 1890, 1642, 1516 and 1455 IU/L were recorded for B. mojavensis AG21, B.vallismortis J77, B. sonorensis 7.26 and B. safiensis AJ49, respectively. Production of reducing sugars by hydrolysis of Stevia rebaudiana leaves with bacterial cellulases and commercially fungal cellulases was investigated and compared. The overall reducing sugar yields of B. mojavensis, B.vallismortis, B. sonorensis, B. safiensis, Aspergillus niger and Trichoderma reesei treated- SSR biomasses reached 3620 ± 181, 3040 ± 164, 3656 ± 164, 2654 ± 106, 2646 ± 145 and 2253 ± 123 mg/L respectively. The unique property of cellulase-producing extremotolerant bacteria, proves the potential candidature for current mainstream agricultural cellulosic biomass conversion into fuel ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Neifar, M., Chouchane, H., Belkacem, N., Jaouani, A., Cherif, A.: Ligninases and glycosyl hydrolases in developing a cellulosic bioethanol industry. J. Adv. Microbiol. 2, 234–348 (2016)

    Google Scholar 

  2. Sindhu, R., Binod, P., Pandey, A.: Biological pretreatment of lignocellulosic biomass an overview. Bioresour. Technol. 199, 76–82 (2016)

    Article  Google Scholar 

  3. Singh, R., Kumar, M., Mittal, A., Mehta, P.K.: Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2), 174 (2016)

    Article  Google Scholar 

  4. Ladeira, S.A., Cruz, E., Delatorre, A.B., Barbosa, J.B., Leal Martins, M.L.: Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electron. J. Biotechnol. 18, 110–115 (2015)

    Article  Google Scholar 

  5. Sadhu, S., Maiti, T.K.: Cellulase production by bacteria: a review. Br. Microbiol. Res. J. 3, 235–258 (2013)

    Article  Google Scholar 

  6. Hasunuma, T., Okazaki, F., Okai, N., Hara, K.Y., Ishii, J., Kondo, A.: A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour. Technol. 135, 513–522 (2013)

    Article  Google Scholar 

  7. Novy, V., Longus, K., Nidetzky, B.: From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol. Biofuels. 8(1), 46 (2015)

    Article  Google Scholar 

  8. Azadian, F., Badoei-dalfard, A., Namaki-Shoushtari, A., Karami, Z., Hassanshahian, M.: Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J. Genet. Eng. Biotechnol. 15, 187–196 (2017)

    Article  Google Scholar 

  9. Behera, B.C., Parida, S., Dutta, S.K., Thatoi, H.N.: Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi River Delta and their cellulase production ability. Am. J. Microbiol. Res. 2, 41–46 (2014)

    Article  Google Scholar 

  10. Balasubramanian, N., Simões, N.: Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int. J. Biol. Micromol. 67, 132–139 (2014)

    Article  Google Scholar 

  11. Lee, Y.J., Kim, B.K., Lee, B.H., Jo, K.I., Lee, N.K., Chung, C.H., et al.: Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99, 378–386 (2008)

    Article  Google Scholar 

  12. Yin, L.J., Lin, H.H., Xiao, Z.R.: Purification and characterization of a cellulase from Bacillus subtilis YJ1. J. Mar. Sci. Technol. 18, 466–471 (2010)

    Google Scholar 

  13. Gaur, R., Tiwari, S.: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15, 19 (2015)

    Article  Google Scholar 

  14. Vijayaraghavan, P., Vincet, S.G.P.: Purification and characterization of carboxymethyl cellulase from Bacillus sp. Isolated from a paddy field. Polish J. Microbiol. 61, 51–55 (2012)

    Article  Google Scholar 

  15. Irfan, M., Mushtaq, Q., Tabssum, F., Shakir, H.A., Qazi, J.I.: Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express 7, 29 (2017)

    Article  Google Scholar 

  16. Vaid, S., Bajaj, B.: Production of ionic liquid tolerant Cellulase from Bacillus subtilis G2 using agroindustrial residues with application potential for saccharification of biomass under one pot consolidated bioprocess. Waste Biomass Valoriz. 8, 949–964 (2017)

    Article  Google Scholar 

  17. Guesmi, A., Ettoumi, B., El Hidri, D., Essanaa, J., Cherif, H., Mapelli, F., Marasco, R., Rolli, E., Boudabous, A., Cherif, A.: Uneven distribution of Halobacillus trueperi species in arid natural saline systems of southern Tunisian Sahara. Microb. Ecol. 66, 831–839 (2013)

    Article  Google Scholar 

  18. Shaik, N.M., Patel, A.A., Mehta, S.A., Patel, N.D.: Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Univ. J. Environ. Res. Technol. 3, 39–49 (2013)

    Google Scholar 

  19. Miller, G.L., Blum, R., Glennon, W., Burton, A.L.: Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127–132 (1960)

    Article  Google Scholar 

  20. Neifar, M., Chouchane, H., Maktouf, S., Gara, J., Jaouani, A., Cherif, A.: Improved sugar yield for bioethanol production by modelling enzymatic hydrolysis of Peganum harmala biomass through response surface methodology. Int. J. Eng. Sci. (IJES) 5, 22–28 (2016)

    Google Scholar 

  21. Neifar, M., Chatter, R., chouchane, H., Genouiz, R., jaouani, A., Masmoudi, A.S., Cherif, A.: Optimization of enzymatic saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third generation bioethanol. AIMS Bioeng 3, 400–410 (2016)

    Article  Google Scholar 

  22. Mathieu, D., Nony, J., Phan-Tan-Luu, R.: NEMROD-W Software. LPRAI, Marseille (2000)

    Google Scholar 

  23. Liang, Y.L., Zhang, Z., Wu, M., Wu, Y., Feng, J.X.: Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Int. (2014) https://doi.org/10.1155/2014/512497

    Article  Google Scholar 

  24. Singh, V.K., Kumar, A.: Production and purification of an extracellular cellulase from Bacillus brevis VS-1. Biochem. Mol. Biol Int. 45, 443–452 (1998)

    Google Scholar 

  25. Gachomo, W.E.: Bacillus pumilus BPCRI 6, a promising candidate for cellulase production under conditions catabolite repression. Afr. J. Biotechnol. 2, 140–146 (2003)

    Article  Google Scholar 

  26. Mayende, L., Wilhelmi, B.S., Pletschke, B.I.: Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38, 2963–2966 (2006)

    Article  Google Scholar 

  27. Rawat, R., Tewari, L.: Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles 16, 637–644 (2012)

    Article  Google Scholar 

  28. dos Santos, T.C., Gomes, D.P.P., Bonomo, R.C.F., Franco, M.: Optimization of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem. 133, 1299–1304 (2012)

    Article  Google Scholar 

  29. Irfan, M., Safdar, A., Syed, Q., Nadeem, M.: Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk. J. Biochem. 37, 287–293 (2012)

    Article  Google Scholar 

  30. Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., Syed, Q., Shakir, H.A., Qazi, J.I.: Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valor. 7, 1389–1396 (2016)

    Article  Google Scholar 

  31. Gautam, R., Sharma, J.: Production and optimization of alkaline cellulase from Bacillus subtilis in submerged fermentation. Int. J. Sci. Res. 3, 1186–1194 (2014)

    Google Scholar 

  32. Annamalai, N., Rajeswari, M.V., Balasubramanian, T.: Enzymatic saccharification of pretreated rice straw by cellulase produced from Bacillus carboniphilus CAS 3 utilizing lignocellulosic wastes through statistical optimization. Biomass Bioenergy 68, 151–160 (2014)

    Article  Google Scholar 

  33. Gokhale, A.A., Lu, J., Lee, I.: Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Cat. B: Enzym. 90, 76–86 (2013)

    Article  Google Scholar 

  34. Coban, I., Sargin, S., Celiktas, M.S., Yesil-Celiktas, O.: Bioethanol production from raffinate phase of supercritical CO2 extracted Stevia rebaudiana leaves. Bioresour. Technol. 120, 52–59 (2012)

    Article  Google Scholar 

  35. Nargotra, P., Vaid, S., Bajaj, B.K.: Cellulase production from Bacillus subtilis SV1 and its application potential for saccharification of ionic liquid pretreated pine needle biomass under one pot consolidated bioprocess. Fermentation 2(4), 19 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the South African/Tunisia research partnership program, bilateral agreement 2014 (“An African Desert Soils Microbial Ecology Research Network” and “Exploration for Novel Xylanases and Ligninases Produced by Actinobacterial Species for Biomass Valorization” research projects); the Young Teacher-Researchers Program “Dr. Hatem Bettahar” in the ambit of the Project “POSITANOL” (2018–2019) and the Tunisian Ministry of Higher Education and Scientific Research in the ambit of the laboratory project “LR11ES31”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Neifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souii, A., Guesmi, A., Ouertani, R. et al. Carboxymethyl Cellulase Production by Extremotolerant Bacteria in Low-Cost Media and Application in Enzymatic Saccharification of Stevia Biomass. Waste Biomass Valor 11, 2111–2122 (2020). https://doi.org/10.1007/s12649-018-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0496-2

Keywords