Skip to main content
Log in

Ultrasonically Synthesized Dielectric Microwave Absorbing Material from Coconut Coir Dust

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Carbon rich natural agricultural wastes are outstanding potential candidates as microwave absorbing materials for new technological developments in electronics and telecommunication, radar and satellite systems. Fast developments in the field of electronics and telecommunication increases electromagnetic pollution due to electromagnetic interference resulting in new technological issues for stealth technology. To deal with these environmental issues, researchers have the challenges to produce low cost, eco-friendly microwave absorbing materials. This paper presents the synthesis and characterization of coconut coir dust based epoxy composites as microwave absorbers. An optimum blend of chemicals like acetone-ethanol (50–50%) is used for surface treatment of the raw coconut coir fibre. The Scanning electron microscopy study shows good dispersion of coconut coir dust in the epoxy matrix. Frequency dependence of both dielectric constant and dielectric loss are measured in the X-band frequency range (8.2–12.4 GHz). The average value of dielectric constant \((\varepsilon ^{\prime})\) 3.32, low value of dielectric loss i.e., 0.25 and the value of loss tangent i.e., 0.75 indicates significant attenuation of the microwave with high attenuation coefficient 1.35 and reduces the amplitude of the microwave. Absorption co-efficient and S11 and S21 parameters show good absorbing capacity of the materials in the same frequency range, with maximum reflection loss − 23.5 dB at 10 GHz frequency. The experimentally determined reflection loss quite well agrees with the calculated ones, which show the effectiveness of absorber for various practical EM wave absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tan, I.A.W., Ahmad, A.L., Hameed, B.H.: Preparation of activated carbon from coconut husk: optimization study on removal of 2, 4, 6-trichlorophenol using response surface methodology. J. Hazard. Mater. 153, 709–717 (2007)

    Google Scholar 

  2. Sarkar, S., Adhikari, B.: Jute felt composite from lignin modified phenolic resin. Polym. Compos. 22(4), 518–527 (2001)

    Google Scholar 

  3. Yang, H., Yan, R., Chen, H., Lee, D.H., Chuguang, Z.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Google Scholar 

  4. Dutch, P.B.V.: Dutch Plantin Optima, the Best Choice for Strawberry Growing, pp. 2. PCA, Zamboanga City (2013)

    Google Scholar 

  5. Shanmugasundaram, R., Jeyalakshmi, T., Mohan, S.S., Saravanan, M., Goparaju, A., Murthy, B.P.: Coco peat—an alternative artificial soil ingredient for the earthworm toxicity testing. J. Toxicol. Environ. Health Sci. 6(1), 5–12 (2013)

    Google Scholar 

  6. Iqbal, M.N., Lee, M.F., Liyana Zahid, Y.S., Mezan, M.S.: A study of the anechoic performance of rice husk-based, geometrically tapered, hollow absorbers. Int. J. Antennas Propag. 12, 1–9 (2014)

    Google Scholar 

  7. Oh, J.H., Oh, K.S., Kim, C.G., Hong, C.S.: Design radar absorbing structures using glass/epoxy composite containing carbon black in the X frequency ranges. Compos. B 5(1), 49–56 (2004)

    Google Scholar 

  8. Panwar, R., Puthucheri, S., Agarwalla, V., Singh, D.: An efficient use of waste material for development of cost-effective broadband radar wave absorber. J. Electromagn. Waves Appl. 29(9), 1238–1255 (2015)

    Google Scholar 

  9. Liyana, Z., Malek, F., Nornikman, H., Affendi, N.A.M., Mohamed, L., Saudin, N., Ali, A.A.: Investigation of sugar cane bagasse as alternative material for pyramidal microwave absorber design, IEEE Symposium on Wireless Technology and Applications, (2012)

  10. Duggal, S., Aul, G.D., Chawla, V.: Investigation of absorption properties of sugarcane bagasse-coal pyramidal microwave absorber Asia-Pacific Microwave Conference, (2016)

  11. Panwar, R., Agarwala, V., Singh, D.: A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceram. Int. 41(2), 2923–2930 (2015)

    Google Scholar 

  12. Iqbal, M.N., Malek, M.F.B.A., Ronald, S.H., Bin Mezan, M.S., Juni, K.M., Chat, R.: A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber. Prog. Electromagn. Res. 131, 19–44 (2013)

    Google Scholar 

  13. Liu, X., Zhang, Z., Wu, Y.: Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. B 42, 326–329 (2011)

    Google Scholar 

  14. Nath, G., Sahu, S., Paikaray, R.: Study of acoustic parameters of binary mixtures of a non-polar liquid with polar liquid at different frequencies. Indian J. Phys. 83(4), 429–436 (2009)

    Google Scholar 

  15. Kumar, A., Singh, G.: Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies. Prog. Electromagn. Res. 69, 47–54 (2007)

    Google Scholar 

  16. Sabouroux, P., Ba, D.: Epsimu, a tool for dielectric properties measurement of porous media: application in wet granular materials characterization. Prog. Electromagn. Res. B 29, 191–207 (2011)

    Google Scholar 

  17. Li, S., Chen, R., Anwar, S., Lu, W., Lai, Y., Chen, H., Hou, B., Ren, F., Gu, B.: Applying effective medium theory in characterizing dielectric constant of solids”. Prog. Electromagn. Res. Lett. 35, 145–153 (2012)

    Google Scholar 

  18. Fan, Z., Luo, G., Zhang, Z., Zhou, L., Wei, F.: Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B 132, 85–89 (2006)

    Google Scholar 

  19. Michielssen, E., Sager, J.M., Ranjithan, S., Mittra, R.: Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEE Trans Microw Theory Tech. 41, 1024–1031 (1993)

    Google Scholar 

  20. Yusoff, A.N., Abdullah, M.H., Ahmad, S.H., Jusoh, S.F., Manso, A.A., Hamid, S.A.A.: Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876–882 (2002)

    Google Scholar 

  21. Rufangura, P., Sabah, C.: Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application. J. Alloy. Compd. 80, 473–479 (2016)

    Google Scholar 

  22. Sarangi, A., Nath, G., Swain, S.K., Paikary, R.: Chemical modification of natural fibers with acetone blended alcohols. Adv. Sci. Lett. 20(3–4), 570–573 (2014)

    Google Scholar 

  23. Sarangi, A., Nath, G., Swain, S.K.: Compatibility study of binary mixture for surface modifications of natural fibers using ultrasonic technique at different frequencies. Indian J. Pure Appl. Phys. 52(1), 30–34 (2014)

    Google Scholar 

  24. Nath, G., Swai, S.K., Sarangi, A., Paikaray, R.: Sonochemical analysis of solvent mixtures used for surface treatment of natural fibers. J. Pure Appl. Ultrason. 35, 133–136 (2013)

    Google Scholar 

  25. Baley, C., Anselmet, T.D., Guyader, J.: Mechanical properties of coir fiber reinforced polymeric composites. Composites 37, 28–33 (1997)

    Google Scholar 

  26. Calado, V., Barreto, D.W., Almeida, D.J.R.M.: The effect of a chemical treatment on the structure and morphology of coir fibers. J. Mater. Sci. Lett. 19, 2151–2153 (2000)

    Google Scholar 

  27. Gassan, J., Bledzki, A.K.: Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59(9), 1303–1309 (1999)

    Google Scholar 

  28. Crane, C.A., Pantoya, M.L., Weeks, B.L., Saed, M.: The effect of particle size on microwave heating of metal and metal oxide powders. Powder Technol. 256, 113–117 (2014)

    Google Scholar 

  29. Agilent Technologies Inc.: Agilent Basics of Measuring the Dielectric Properties of Materials, pp. 1–32, Agilent Technologies Inc., Santa Clara (2008)

    Google Scholar 

  30. Kocakusak, A., Colak, B., Helhel, S.: Frequency dependent complex dielectric permittivity of rubber and magnolia leaves and leaf water content relation. J. Microw. Power Electromagn. Energy 50, 294–307 (2016)

    Google Scholar 

  31. Helhel, S., Kurnaz, O.: Buried metal detection within the wooden block by X-band measurements. Microw. Opt. Technol. Lett. 58(5), 1245–1253 (2016)

    Google Scholar 

  32. Cakir, M., Kocakuşak, A., Kockal, N.U., Helhel, S.: Investigation of electromagnetic shielding and absorbing capabilities of cementitious composites with waste metallic chips. J. Microw. Power Electromagn. Energy 51, 31–42 (2017)

    Google Scholar 

  33. Bbrigida, A.I.S., Calado, V.M.A., Goncalves, L.R.B., Coelho, M.A.Z.: Effect of chemical treatments on properties of green coconut fibre. Carbohydr. Polym. 79, 832–838 (2010)

    Google Scholar 

  34. Von Hippel, A.R.: Dielectrics and Waves. Wiley, New York (1954)

    Google Scholar 

  35. Griffiths, D.J.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  36. Moulson, A.J., Herbert, J.M.: Electroceramics: Materials, Properties, Applications. 2nd ed. Wiley, Chichester (2003)

    Google Scholar 

  37. Ayamani, E., Hamdan, J.S., Rahman, M.R., Bakri, M.K.B.: Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng. 97, 536–544 (2014)

    Google Scholar 

  38. Joseph, S., Thomas, S.: Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J. Appl. Polym. Sci. 109, 256–263 (2008)

    Google Scholar 

  39. Atwater, J.E., Wheeler, R.R.: Complex permittivities and dielectric relaxation of granular activated carbons at microwave frequencies between 0.2 and 26 GHz. Carbon 41, 1801–1807 (2003)

    Google Scholar 

  40. Singha, A.S., Rana, A.K., Jarial, R.K.: Mechanical, dielectric and thermal properties of Grewia optiva fibers reinforced unsaturated polyester matrix based composites. Mater. Des. 51, 924–934 (2013)

    Google Scholar 

  41. Fares, S.: Frequency dependence of the electrical conductivity and dielectric constants of polycarbonate (Makrofol-E) film under the effects of γ-radiation. Nat. Sci. 3(12), 1034–1039 (2011)

    Google Scholar 

  42. Zahid, L., Malek, F., Nornikman, H., Affendi, N.A.M., Ali, A., Hussin, N., Ahmad, B.H., Abd Aziz, M.Z.A.: Development of pyramidal microwave absorber using sugar cane bagasse. Prog. Electromagn. Res. 137, 687–702 (2013)

    Google Scholar 

  43. Liyana, Z., Malek, F., Nornikman, H., Mohd Affendi, N.A., Mohamed, L., Saudin, N., Ali, A.: Investigation of sugar cane bagasse as alternative material for pyramidal microwave absorber design, IEEE Symposium on wireless technology and applications, pp. 66–70 (2012)

  44. Das, S., Sahu, S.K., Oraon, R., Routray, P.C., Baskey, H., Nayak, G.C.: Reduced-graphene-oxide-and-strontium-titanate-based double-layered composite: an efficient microwave-absorbing material. Bull. Mater. Sci. 40(2), 301–306 (2017)

    Google Scholar 

  45. Liu, Y., Zhao, K., Drew, M.G.B., Liu, Y.: A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 8, 015223 (2018)

    Google Scholar 

  46. Hasnain, A., Azwati, A., Yuzairi, Y., Aiza, M.M., Najwa, R.A., Ahmad, R.R., Mohd, N.T.: Preliminary study on absorption rate of truncated wedge biomass microwave durian absorber, Int. Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, pp. 11–14 (2017)

Download references

Acknowledgements

The authors are thankful to DRDO, New Delhi for financial support under the project ERIP/ER/1203150/M/01/1559 and DMSRDE Lab, Kanpur for microwave characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.P., Nath, G. & Mishra, P. Ultrasonically Synthesized Dielectric Microwave Absorbing Material from Coconut Coir Dust. Waste Biomass Valor 11, 1481–1490 (2020). https://doi.org/10.1007/s12649-018-0478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0478-4

Keywords

Navigation