Skip to main content

Advertisement

Log in

Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

From the residual biomass generated by the palm oil sector in Ecuador, kernel shell (KS) is of major importance because it has been demonstrated that its use as solid fuel could replace diesel and LPG currently subsidized by the government to be used in the industrial and commercial sectors to produce thermal energy. The implementation of a torrefaction process could improve the KS handling and transportation operations, thus promoting its domestic use. However, the mesocarp fiber (MF) generated in the mills is 2.5 times the amount of KS generated. Therefore, this work analyzes an energy system that could valorize simultaneously MF and KS by the integration of pyrolysis and torrefaction processes, to produce biochar and torrefied fuel. A numerical model is used to analyze the integration of the pyrolysis and torrefaction processes considering a temperature range between 250 and 550 °C. It is observed that biochar and torrefied fuel could be produced simultaneously from pyrolysis process temperatures of 460 °C. The maximum load capacity of the integrated pyrolysis and torrefaction system corresponds to the highest temperature considered 550 °C (1 kg of KS per each kg of MF). However, the highest energy efficiency is found at lower pyrolysis process temperatures, near the auto-thermal operation temperature. The average efficiency of the analyzed energy system is 59.7%. Thus, the use of an integrated pyrolysis and torrefaction system could be an efficient alterative to be applied in small scale mills, to improve the KS energy density and valorize MF into biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

db:

Dry basis

wb:

Wet basis

pg:

Pyrolysis gas

tg:

Torrefaction gas

G:

Permanent gas

R:

Reactants

P:

Products

r:

Reaction

L:

Lost

s:

Sensible

l:

Latent

hr:

Heat of reaction

ch:

Char

t:

Tar

F:

Feedstock

g:

Gas

torr:

Torrefaction

@260 °C:

Process occurring at 260 °C

wt%:

Weight percentage (%)

\({W_{C,F}}\) :

Carbon content in the feedstock (kg/kg,F)

\({W_{H,F}}\) :

Hydrogen content in the feedstock (kg/kg,F)

\({W_{S,F}}\) :

Sulfur content in the feedstock (kg/kg,F)

\({W_{O,F}}\) :

Oxygen content in the feedstock (kg/kg,F)

\({W_{N,F}}\) :

Nitrogen content in the feedstock (kg/kg,F)

\({W_{Z,F}}\) :

Ash content in the feedstock (kg/kg,F)

\({h_{wv,T}}\) :

Water enthalpy of vaporization at reference temperature T (J/kgi)

\(\Delta {H_R}\) :

Energy content in the feedstock (MJ/kg,F)

\(\Delta {H_r}\) :

Energy consumed during the carbonization/torrefaction process (MJ/kg,F)

\(\Delta {H_P}\) :

Energy content in the products (MJ/kg,F)

\(\Delta {H_L}\) :

Energy loss during the carbonization/torrefaction process (MJ/kg,F)

\(\Delta {H_{R,s}}\) :

Sensible heat content in the pyrolysis reactants (MJ/kg,F)

\(\Delta {H_{R,l}}\) :

Latent heat content in the pyrolysis reactants (MJ/kg,F)

\(\Delta {H_{R,hr}}\) :

Heat of reaction in the pyrolysis reactants (MJ/kg,F)

\(T\) :

Temperature (°C)

\({W_{W,F}}\) :

Moisture content; mass ratio (kgmoisture/kg,F)

\(\Delta {H_{P,s}}\) :

Sensible heat content in the pyrolysis products (MJ/kg,F)

\(\Delta {H_{P,l}}\) :

Latent heat content in the pyrolysis products (MJ/kg,F)

\(\Delta {H_{P,hr}}\) :

Heat of reaction in the pyrolysis products (MJ/kg,F)

\({Y_j}\) :

Yield of the pyrolytic product “j” (kgj/kg,F)

\({M_j}\) :

Mass of pyrolytic product “j” (kg)

\(c{p_j}\) :

Specific heat of the pyrolytic product “j” (kJ/kg K)

\({T_j}\) :

Temperature of the pyrolytic product “j” (°C)

\({W_{pg}}\) :

Condensable species in pyrolysis gas (kgj/kg,F)

\({Y_{ch}}\) :

Yield of char (kgch/kg,F)

\({Y_G}\) :

Yield of permanent gas (kgG/kg,F)

\({Y_t}\) :

Yield of tar (kgt/kg,F)

\({W_{C,pg}}\) :

Carbon content in the pyrolysis gas (kg/kgpg)

\({W_{H,pg}}\) :

Hydrogen content in the pyrolysis gas (kg/kgpg)

\({W_{O,pg}}\) :

Oxygen content in the pyrolysis gas (kg/kgpg)

\({W_{N,pg}}\) :

Nitrogen content in the pyrolysis gas (kg/kgpg)

\({W_{S,pg}}\) :

Sulfur content in the pyrolysis gas (kg/kgpg)

\({W_{W,pg}}\) :

Pyrolytic water content in the pyrolysis gas (kg/kgpg)

\({M_C}\) :

Molar mass of carbon (kg/mol)

\({M_H}\) :

Molar mass of hydrogen (kg/mol)

\({M_O}\) :

Molar mass of oxygen (kg/mol)

\({M_N}\) :

Molar mass of nitrogen (kg/mol)

\({M_S}\) :

Molar mass of sulfur (kg/mol)

\({M_W}\) :

Molar mass of pyrolytic water (kg/mol)

\({W_{a,A}}\) :

Combustion air (stoichiometric and excess air) (kgair/kgpg)

\({M_{air}}\) :

Molar mass of air (kg/mol)

\({W_{VA}}\) :

Moisture content of combustion air (kgmoisture/kgair)

\({n_{CO2}}\) :

CO2 yield in the flue gas (kmol/kgpg)

\({n_{H2O}}\) :

H2O yield in the flue gas (kmol/kgpg)

\({n_{O2}}\) :

O2 yield in the flue gas (kmol/kgpg)

\({n_{SO2}}\) :

SO2 yield in the flue gas (kmol/kgpg)

\({n_{N2}}\) :

N2 yield in the flue gas (kmol/kgpg)

\(\Delta {H_{R,C~}}\) :

Energy content in the reactants of the combustion process (MJ/kgpg)

\(\Delta {H_{u,C}}\) :

Thermal energy in result of the combustion process (MJ/kgpg)

\(\Delta {H_{P,C}}\) :

Energy content in the products of the combustion process (MJ/kgpg)

\(\Delta {H_{L,C}}\) :

Energy loss during the combustion process (MJ/kgpg)

\(\Delta {H_{av}}\) :

Excess heat (MJ/kg,F)

\(\Delta {H_i}\) :

Heat from external sources (MJ/kg,F)

\({Y_{pg}}\) :

Yield of pyrolysis gas (kg/kg,F)

\({Y_{tg}}\) :

Yield of torrefaction gas (kg/kg,F)

\({\dot {\text{m}}_{{{torr}}}}\) :

Load capacity of the torrefaction process (kg,KS/kg,MF)

\({n_I}\) :

First law efficiency (%)

References

  1. Ministerio de Agricultura Ganadería Pesca y Acuacultura: Diagnóstico de la cadena de la palma aceitera, plan de mejora competitiva. In: Análisis sectorial aceite de palma y elaborados. Ministerio de Agricultura Ganadería Pesca y Acuacultura, Quito (2014)

    Google Scholar 

  2. Fedepalma: Anuario Estadístico 2017: Principales cifras de la agroindustria de la palma de aceite en Colombia 2012–2016. (2017). https://doi.org/10.1017/CBO9781107415324.004

  3. Osei-Amponsah, C., Visser, L., Adjei-Nsiah, S., Struik, P.C., Sakyi-Dawson, O., Stomph, T.J.: Processing practices of small-scale palm oil producers in the Kwaebibirem District, Ghana: a diagnostic study. NJAS—Wageningen J. Life Sci. 60–63, 49–56 (2012). https://doi.org/10.1016/j.njas.2012.06.006

    Article  Google Scholar 

  4. Poku, K.: Small-Scale Palm Oil Processing in Africa. Food and Agriculture Organization of the United Nations, Rome (2002)

    Google Scholar 

  5. Salomón, M.: On the Optimal Use of Industrial Generated Biomass Residues for Polygeneration. KTH School of industrial Engineering and Management, Stockholm (2014)

    Google Scholar 

  6. Ministerio de Electricidad y Energía Renovable: ATLAS Bioenergético de la República del Ecuador. Ministerio de Electricidad y Energía Renovable, Quito (2014)

    Google Scholar 

  7. Ninduangdee., P., Kuprianov., V.: Combustion of palm kernel shell in a fluidized bed: optimization of biomass particle size and operating conditions. Energy Convers. Manag. 85, 800–808 (2014). https://doi.org/10.1016/j.enconman.2014.01.054

    Article  Google Scholar 

  8. Faizal, H.M., Shamsuddin, H.S., Heiree, M.H.M., Hanaffi, M.F.M.A., Rahman, M.R.A., Rahman, M.M., Latiff, Z.: Torrefaction of densified mesocarp fibre and palm kernel shell. Renew. Energy 122, 419–428 (2018). https://doi.org/10.1016/j.renene.2018.01.118

    Article  Google Scholar 

  9. Heredia, M.A.: Cuesco de palma africana, un nuevo combustible para uso comercial en Ecuador: análisis económico y evidencia experimental. In: Revista SOMOS MAGAP (ed.) Ministerio de Agricultura y Ganadería, Quito (2017)

  10. Heredia, M.A., Tarelho, L.A.C., Matos, A., Rivadeneira-Rivera, D.: Palm oil kernel combustion in a prototype furnace in the Ecuadorian sierra region. In: VI Escola de Combustão. Foz do Iguaçu, UNILA (2017)

    Google Scholar 

  11. Heredia, M.A., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E.: Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass. Energy Policy 114, 332–341 (2018). https://doi.org/10.1016/j.enpol.2017.12.014

    Article  Google Scholar 

  12. Onoja, E., Chandren, S., Razak, F.I.A., Mahat, N.A., Wahab, R.A.: Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0258-1

    Article  Google Scholar 

  13. Mitschke, T.: Desarrollo de análisis de mercado nacional e internacional de los productos de pellet. GFA Consulting Group GmbH, Quito (2016)

    Google Scholar 

  14. Chen, W.-H., Peng, J., Bi, X.T.: A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44, 847–866 (2015). https://doi.org/10.1016/j.rser.2014.12.039

    Article  Google Scholar 

  15. Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B.: Torrefaction of oil palm wastes. Fuel 90, 2585–2591 (2011). https://doi.org/10.1016/j.fuel.2011.03.021

    Article  Google Scholar 

  16. Sukiran, M.A., Abnisa, F., Daud, W.M.A.W., Abu Bakar, N., Loh, S.K.: A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 149, 101–120 (2017). https://doi.org/10.1016/j.enconman.2017.07.011

    Article  Google Scholar 

  17. Garcia-Nunez, J.A., Rodriguez, D.T., Fontanilla, C.A., Ramirez, N.E., Silva Lora, E.E., Frear, C.S., Stockle, C., Amonette, J., Garcia-Perez, M.: Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass Bioenergy 95, 310–329 (2016). https://doi.org/10.1016/j.biombioe.2016.05.020

    Article  Google Scholar 

  18. Qian, K., Kumar., A., Zhang, H., Bellmer, D., Huhnke, R.: Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 42, 1055–1064 (2015). https://doi.org/10.1016/j.rser.2014.10.074

    Article  Google Scholar 

  19. Scholz, S.M., Sembres, T., Roberts, K., Whitman, T., Wilson, K., Lehmann, J.: Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture. The World Bank, Washington, DC (2014)

    Google Scholar 

  20. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011). https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  21. Liu, N., Zhou, J., Han, L., Ma, S., Sun, X., Huang, G.: Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresour. Technol. 241, 190–199 (2017). https://doi.org/10.1016/j.biortech.2017.03.144

    Article  Google Scholar 

  22. Li, Z., Jia, M., Christie, P., Ali, S., Wu, L.: Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Chemosphere 204, 390–397 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.061

    Article  Google Scholar 

  23. Kutlu, H., Unsal, I., Görgülü, M.: Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Anim. Feed Sci. Technol. 90, 213–226 (2001). https://doi.org/10.1016/S0377-8401(01)00205-X

    Article  Google Scholar 

  24. Kauffman, N., Dumortier, J., Hayes, D.J., Brown, R.C., Laird, D.A.: Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 3, 167–176 (2014). https://doi.org/10.1016/j.biombioe.2014.01.049

    Article  Google Scholar 

  25. Chidumayo, E.N., Gumbo, D.J.: The environmental impacts of charcoal production in tropical ecosystems of the world: a synthesis. Energy Sustain. Dev. 17, 86–94 (2013). https://doi.org/10.1016/j.esd.2012.07.004

    Article  Google Scholar 

  26. Meneghetti, G., Encarnação, F.: The environmental impact on air quality and exposure to carbon monoxide from charcoal production in southern Brazil. Environ. Res. 116, 136–139 (2012). https://doi.org/10.1016/j.envres.2012.03.012

    Article  Google Scholar 

  27. Sparrevik, M., Adam, C., Martinsen, V., Cornelissen, G.: Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 72, 65–73 (2015). https://doi.org/10.1016/j.biombioe.2014.11.016

    Article  Google Scholar 

  28. de Oliveira Vilela, A., Lora, E.S., Quintero, Q.R., Vicintin, R.A., Souza, T.P.: A new technology for the combined production of charcoal and electricity through cogeneration. Biomass Bioenergy 69, 222–240 (2014). https://doi.org/10.1016/j.biombioe.2014.06.019

    Article  Google Scholar 

  29. Garcia-Perez, M., Lewis, T., Kruger, C.E.: Methods for Producing Biochar and Advanced Biofuels in Washington State: Literature Review of Pyrolysis Reactors. Washington State University, Pullman (2010)

    Google Scholar 

  30. Basu, P.: Biomass Gasification and Pyrolysis. Elsevier, Burlington (2010)

    Google Scholar 

  31. Rosas, G., Cara, J., Martínez, O.: Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J. Clean. Prod. 120, 181–190 (2016). https://doi.org/10.1016/j.jclepro.2014.10.082

    Article  Google Scholar 

  32. Heredia, M., Tarelho, L., Matos, A.: Valoración del calor residual de reactores de pirólisis para la producción combinada de carbón vegetal y combustible torrificado. Rev. Téc. Energ. 12, 396–404 (2016)

    Google Scholar 

  33. Garcia-Nunez, J.A., Ramirez-Contreras, N.E., Rodriguez, D.T., Silva Lora, E.E., Frear, C.S., Stockle, C., Garcia-Perez, M.: Evolution of palm oil mills into bio-refineries: literature review on current and potential uses of residual biomass and effluents. Resour. Conserv. Recycl. 110, 99–114 (2015). https://doi.org/10.1016/j.resconrec.2016.03.022

    Article  Google Scholar 

  34. Garcia-Nunez, J.A., Garcia-Perez, M., Rodriguez, D.T., Ramirez, N.E., Fontanilla, C.A., Stockle, C., Amonette, J.E., Frear, C.S., Silva Lora, E.E.: Evolution of palm oil mills into biorefineries: technical and enviromental assesment of six biorefinery options. In: Biorefinery I: Chemicals and Materials from Thermo-Chemical Biomass Conversion and Related Processes. Elsevier, Oxford (2015)

    Google Scholar 

  35. Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37, 611–630 (2011). https://doi.org/10.1016/j.pecs.2011.01.001

    Article  Google Scholar 

  36. Neves, D.: Evaluation of Thermochemical Conversion in Fluidized Bed. Universidade de Aveiro, Aveiro (2013)

    Google Scholar 

  37. Alburquerque, A., Mora, S.M.E., Barr, M., Rabanales, V., De, C., Madrid, C.: Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. J. Clean. Prod. 120, 191–197 (2016). https://doi.org/10.1016/j.jclepro.2014.10.080

    Article  Google Scholar 

  38. Batidzirai, B., Mignot, aP.R., Schakel, W.B., Junginger, H.M., Faaij, A.P.C.: Biomass torrefaction technology: techno-economic status and future prospects. Energy 62, 196–214 (2013). https://doi.org/10.1016/j.energy.2013.09.035

    Article  Google Scholar 

  39. Luthfia, N., Natanael, A., Budiman, S., Budiman, A.: Pyrolysis of palm-oil shell to bio-oil. In: Proceeding the Regional Conference on Chemical Engineering 2014, pp. 1–4 (2015)

  40. Abnisa, F., Arami-Niya, A., Daud, W.M.A.W., Sahu, J.N.: Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenergy Res. 6, 830–840 (2013). https://doi.org/10.1007/s12155-013-9313-8

    Article  Google Scholar 

  41. National Institute of Standards and Technology: NIST Chemistry Webbook. U.S. Secretary of Commerce, Gaithersburg (2017)

    Google Scholar 

  42. Tesfaldet, G., Adetoyese, O., Ho, T., Tsz, Y., Yu, Z., Chi, W.: Design and optimization of biomass power plant. Chem. Eng. Res. Des. 2, 1412–1427 (2014)

    Google Scholar 

  43. Lythcke-Jørgensen, C., Haglind, F., Clausen, L.R.: Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production. Energy Convers. Manag. 85, 817–827 (2014). https://doi.org/10.1016/j.enconman.2014.01.018

    Article  Google Scholar 

  44. Kamate, S.C., Gangavati, P.B.: Exergy analysis of cogeneration power plants in sugar industries. Appl. Therm. Eng. 29, 1187–1194 (2009). https://doi.org/10.1016/j.applthermaleng.2008.06.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Instituto de Fomento al Talento Humano-IFTH and The Republic of Ecuador. The first author acknowledges Gonzalo Mejía from ARMEL-GM for providing data and relevant insights regarding the Ecuadorian palm oil sector. The authors acknowledge the Portuguese Foundation of Science and Technology for the financial support through project PTDC/AAC-AMB/116568/2010 (Project no. FCOMP-01-0124-FEDER-019346)-BiomAshTech—Ash impacts during thermochemical conversion of biomass and project UID/AMB/50017/2013 (CESAM) through national funds, co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Heredia Salgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, M.A.H., Tarelho, L.A.C. & Matos, A. Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills. Waste Biomass Valor 11, 343–356 (2020). https://doi.org/10.1007/s12649-018-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0467-7

Keywords

Navigation