Skip to main content

The pH-stat Butyric Acid Feeding Strategy Coupled with Gas-Stripping for n-Butanol Production by Clostridium beijerinckii

Abstract

Organic acids are produced as by-product in food waste by acid fermentation process for biogas production. Particularly, butyric acid is one of the main organic acids and can be converted to n-butanol via the butyrate kinase pathway. However, bacterial toxicity of butyric acid limits its use as a major carbon source. Here, we produced n-butanol from butyric acid using Clsotrdium beijerinckii KCTC 2203, which was the most suitable strain among the six Clostridia strains tested. We produced up to 9.84 g/L of n-butanol using a mixed carbon source composed of 25 g/L of glucose and 10 g/L of butyric acid in a flask culture. The pH-stat fed-batch fermentation method was also performed to increase the production rate. To maximize the effect of pH-stat feeding, substrate feeding solutions with various butyrate/glucose (B/G) ratios were fed. As a result, 9.69 g/L of n-butanol could be produced at a B/G ratio of 0.5, and the pH-stat fed-batch feeding strategy exhibited an enhanced n-butanol production rate of 0.40 g/L/hr without substrate depletion. Finally, we integrated this method with gas stripping using the volatility of n-butanol to prevent product inhibition, resulting in the production of 41.27 g/L of n-butanol in 124 h.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Edwards, R., Beziat, J.C., Larivé, J.F.: Well-to-wheels Analysis of Future Automotive Fuels and Powertrains in the European Context Joint Research Centre of the European Commission, EUCAR and CONCAWE Report Version 2a (2011)

  2. Ndaba, B., Chiyanzu, I., Marx, S.: n-Butanol derived from biochemical and chemical routes: a review. Biotechnol. Rep. 8(Supplement C), 1–9 (2015). https://doi.org/10.1016/j.btre.2015.08.001

    Article  Google Scholar 

  3. Sorda, G., Banse, M., Kemfert, C.: An overview of biofuel policies across the world. Energy Policy. 38(11), 6977–6988 (2010). https://doi.org/10.1016/j.enpol.2010.06.066

    Article  Google Scholar 

  4. Ezeji, T., Milne, C., Price, N.D., Blaschek, H.P.: Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85(6), 1697–1712 (2010). https://doi.org/10.1007/s00253-009-2390-0

    Article  Google Scholar 

  5. Bowles, L.K., Ellefson, W.L.: Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50(5), 1165–1170 (1985)

    Article  Google Scholar 

  6. Outram, V., Lalander, C.-A., Lee, J.G.M., Davies, E.T., Harvey, A.P.: Applied in situ product recovery in ABE fermentation. Biotechnol. Prog. 33(3), 563–579 (2017). https://doi.org/10.1002/btpr.2446

    Article  Google Scholar 

  7. Patakova, P., Maxa, D., Rychtera, M., Linhova, M., Fribert, P., Muzikova, Z., Lipovsky, J., Paulova, L., Pospisil, M., Sebor, G., Melzoch, K.: Perspectives of Biobutanol Production and Use. In: Bernardes, M.A.d.S. (ed.) Biofuel’s Engineering Process Technology. p. Ch. 11. InTech, Rijeka (2011)

    Google Scholar 

  8. Girotto, F., Alibardi, L., Cossu, R.: Food waste generation and industrial uses: a review. Waste Manag. 45(Supplement C), 32–41 (2015). https://doi.org/10.1016/j.wasman.2015.06.008

    Article  Google Scholar 

  9. Yasin, N.H.M., Mumtaz, T., Hassan, M.A., Abd Rahman, N.A.: Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manag. 130(Supplement C), 375–385 (2013). https://doi.org/10.1016/j.jenvman.2013.09.009

    Article  Google Scholar 

  10. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz. 1(1), 21–39 (2010). https://doi.org/10.1007/s12649-009-9001-2

    Article  Google Scholar 

  11. Shinto, H., Tashiro, Y., Yamashita, M., Kobayashi, G., Sekiguchi, T., Hanai, T., Kuriya, Y., Okamoto, M., Sonomoto, K.: Kinetic modeling and sensitivity analysis of acetone–butanol–ethanol production. J. Biotechnol. 131(1), 45–56 (2007). https://doi.org/10.1016/j.jbiotec.2007.05.005

    Article  Google Scholar 

  12. Martin, J.R., Petitdemange, H., Ballongue, J., Gay, R.: Effects of acetic and butyric acids on solvents production by Clostridium acetobutylicum. Biotech. Lett. 5(2), 89–94 (1983). https://doi.org/10.1007/BF00132165

    Article  Google Scholar 

  13. Gottschal, J.C., Morris, J.G.: The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate. FEMS Microbiol. Lett. 12(4), 385–389 (1981). https://doi.org/10.1111/j.1574-6968.1981.tb07679.x

    Article  Google Scholar 

  14. Yu, M., Zhang, Y., Tang, I.C., Yang, S.-T.: Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13(4), 373–382 (2011). https://doi.org/10.1016/j.ymben.2011.04.002

    Article  Google Scholar 

  15. Al-Shorgani, N.K.N., Kalil, M.S., Yusoff, W.M.W., Hamid, A.A.: Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J. Biol. Sci. 25(2), 339–348 (2018). https://doi.org/10.1016/j.sjbs.2017.03.020

    Article  Google Scholar 

  16. Kudahettige-Nilsson, R.L., Helmerius, J., Nilsson, R.T., Sjöblom, M., Hodge, D.B., Rova, U.: Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Biores. Technol. 176, 71–79 (2015). https://doi.org/10.1016/j.biortech.2014.11.012

    Article  Google Scholar 

  17. Tracy, B.P.: Improving butanol fermentation to enter the advanced biofuel market. mBio. 3(6), e00518–e00512 (2012). https://doi.org/10.1128/mBio.00518-12

    Article  Google Scholar 

  18. Moon, H.G., Jang, Y.-S., Cho, C., Lee, J., Binkley, R., Lee, S.Y.: One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363(3), fnw001–fnw001 (2016). https://doi.org/10.1093/femsle/fnw001

    Article  Google Scholar 

  19. Branduardi, P., Porro, D.: n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiol. Lett. 363(8), fnw070–fnw070 (2016). https://doi.org/10.1093/femsle/fnw070

    Article  Google Scholar 

  20. Jiang, M., Chen, J., He, A., Wu, H., Kong, X., Liu, J., Yin, C., Chen, W., Chen, P.: Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochem. 49(8), 1238–1244 (2014). https://doi.org/10.1016/j.procbio.2014.04.017

    Article  Google Scholar 

  21. Visioli, L.J., Alves, E.A., Trindade, A., Kuhn, R.C., Schwaab, M., Mazutti, M.A.: Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source. Ciência Rural 45, 1707–1712 (2015)

    Article  Google Scholar 

  22. Jones, D.T., Woods, D.R.: Acetone–butanol fermentation revisited. Microbiol. Rev. 50(4), 484–524 (1986)

    Article  Google Scholar 

  23. Soni, B.K., Das, K., Ghose, T.K.: Inhibitory factors involved in acetone-butanol fermentation by Clostridium saccharoperbutylacetonicum. Curr. Microbiol. 16(2), 61–67 (1987). https://doi.org/10.1007/BF01588173

    Article  Google Scholar 

  24. Al-Shorgani, N.K.N., Ali, E., Kalil, M.S., Yusoff, W.M.W.: Bioconversion of butyric acid to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in a limited nutrient medium. Bio Energy Res. 5(2), 287–293 (2012). https://doi.org/10.1007/s12155-011-9126-6

    Article  Google Scholar 

  25. Li, T., Yan, Y., He, J.: Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Biores. Technol. 155, 220–228 (2014). https://doi.org/10.1016/j.biortech.2013.12.089

    Article  Google Scholar 

  26. Thorn, G.J., King, J.R., Jabbari, S.: pH-induced gene regulation of solvent production by Clostridium acetobutylicum in continuous culture: Parameter estimation and sporulation modelling. Math. Biosci. 241(2), 149–166 (2013). https://doi.org/10.1016/j.mbs.2012.11.004

    MathSciNet  Article  MATH  Google Scholar 

  27. Biebl, H.: Comparative investigations of growth and solvent formation in ‘Clostridium saccharoperbutylacetonicum’ DSM 2152 and Clostridium acetobutylicum DSM 792. J. Ind. Microbiol. Biotechnol. 22(2), 115–120 (1999). https://doi.org/10.1038/sj.jim.2900616

    Article  Google Scholar 

  28. Tashiro, Y., Takeda, K., Kobayashi, G., Sonomoto, K., Ishizaki, A., Yoshino, S.: High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98(4), 263–268 (2004). https://doi.org/10.1016/S1389-1723(04)00279-8

    Article  Google Scholar 

  29. Hüsemann Michael, H.W., Eleftherios, P.T.: Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol. Bioeng. 32(7), 843–852 (1988). https://doi.org/10.1002/bit.260320702

    Article  Google Scholar 

  30. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63(6), 653–658 (2004). https://doi.org/10.1007/s00253-003-1400-x

    Article  Google Scholar 

  31. Qureshi, N., Blaschek, H.P.: Recovery of butanol from fermentation broth by gas stripping. Renew. Energy. 22(4), 557–564 (2001). https://doi.org/10.1016/S0960-1481(00)00108-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (20163010092150) and Korea Institute of Industrial Technology as “International Joint Research Project (JE180010)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Jun Yoon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, DG., Jeon, JM., Yang, YH. et al. The pH-stat Butyric Acid Feeding Strategy Coupled with Gas-Stripping for n-Butanol Production by Clostridium beijerinckii. Waste Biomass Valor 11, 1077–1084 (2020). https://doi.org/10.1007/s12649-018-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0461-0

Keywords

  • n-Butanol
  • Butyric acid
  • Clostridium beijerinckii
  • pH-stat
  • Fed-batch fermentation
  • Gas-stripping