Skip to main content
Log in

Fractionation and Structural Characterization of Hemicellulose from Steam-Exploded Banana Rachis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Banana production in tropical countries generates significant quantity of waste. Biorefinery of food waste biomass into cellulose, hemicellulose, lignin or pectin macromolecules have grown interest in recent scientific literature. In this paper, hemicellulose from banana rachis (Musa cavendish) was extracted by steam explosion at three severity levels (2.97, 3.57 and 3.78) and was further fractionated by graded ethanol precipitation method (15%, 60% and 80%). The recovered hemicelluloses sub-fractions (H1, H2 and H3) were characterized for their chemical composition and structural features by HPSEC, TGA/DTG, FTIR, 1H and 2D NMR techniques. The hemicellulose extraction yield increased with the severity level and treatment duration. The average molecular weight of the extracted hemicellulose macromolecules decreased from H1-60% ethanol hemicellulose sub-fraction with 143 790 g/mol, followed by H3-60% ethanol hemicellulose sub-fraction with 110 841 g/mol and finally H2-60% ethanol hemicellulose sub-fraction with 61 404 g/mol. The H1-60% ethanol hemicellulose sub-fraction extracted during the steam explosion at the lowest severity level showed the largest molecular weight and exhibited rather a high arabinose/xylose ratio and uronic acid content. Structural analysis revealed that hemicellulose from the 60%-ethanol hemicellulose sub-fractions were mainly arabino-glucuronoxylan (AGX). However, chemical analysis also revealed significant contents of co-extracted residual lignin. Although the ethanol fractionation helped at lowering the lignin content in the 60%-ethanol hemicellulose sub-fractions (20.1% in H2-60%, 24.0% in H1-60% and 28.0 in H3-60%) relatively to 80%-ethanol hemicellulose sub-fractions, additional purification step was still required to improve the quality of the extracted hemicellulose sub-fractions (purity and coloration). Nevertheless these results proved that steam explosion was an effective technique for the extraction of high molecular mass AGX hemicellulose macromolecules from banana rachis residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gañán, P., Zuluaga, R., Restrepo, A., Labidi, J., Mondragon, I.: Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresour. Technol. 99, 486–491 (2008). https://doi.org/10.1016/j.biortech.2007.01.012

    Article  Google Scholar 

  2. Mohapatra, D., Mishra, S., Sutar, N.: Banana and its by-product utilisation: an overview. J. Sci. Ind. Res. 69, 323–329 (2010)

    Google Scholar 

  3. Kamdem, I., Tomekpe, K., Thonart, P.: Production potentielle de bioéthanol, de biométhane et de pellets à partir des déchets de biomasse lignocellulosique du bananier (Musa spp.) au Cameroun. Biotechnol. Agron. Soc. Environ. 15, 471–483 (2011)

    Google Scholar 

  4. Kamdem, I., Hiligsmann, S., Vanderghem, C., Jacquet, N., Tiappi, F.M., Richel, A., Jacques, P., Thonart, P.: Enhanced biogas production during anaerobic digestion of steam-pretreated lignocellulosic biomass from williams cavendish banana plants. Waste Biomass Valoriz. (2016). https://doi.org/10.1007/s12649-016-9788-6

    Article  Google Scholar 

  5. Tiappi, M.F.D., Emaga, T.H., Tchokouassom, R., Vanderghem, C., Aguedo, M., Gillet, S., Jacquet, N., Danthine, S., Deleu, M., Richel, A.: Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Convers. Biorefin. (2015). https://doi.org/10.1007/s13399-015-0158-6

    Article  Google Scholar 

  6. Oliveira, L., Cordeiro, N., Evtuguin, D.V., Torres, I.C., Silvestre, A.J.D.: Chemical composition of different morphological parts from “Dwarf Cavendish” banana plant and their potential as a non-wood renewable source of natural products. Ind. Crops Prod. 26, 163–172 (2007). https://doi.org/10.1016/j.indcrop.2007.03.002

    Article  Google Scholar 

  7. Cordeiro, N., Oliveira, L., Evtuguin, D., Silvestre, A.J.D.: Structural characterization of stalk lignin from banana plant. Ind. Crops Prod. 29, 86–95 (2009). https://doi.org/10.1016/j.indcrop.2008.04.012

    Article  Google Scholar 

  8. Xue, B.-L., Wen, J.-L., Xu, F., Sun, R.-C.: Structural characterization of hemicelluloses fractionated by graded ethanol precipitation from Pinus yunnanensis. Carbohydr. Res. 352, 159–165 (2012). https://doi.org/10.1016/j.carres.2012.02.004

    Article  Google Scholar 

  9. Ebringerova, A.: Structural diversity and application potential of hemicelluloses. Macromol. Symp. 232, 1–12 (2006). https://doi.org/10.1002/masy.200551401

    Article  Google Scholar 

  10. Peng, F., Bian, J., Ren, J.-L., Peng, P., Xu, F., Sun, R.-C.: Fractionation and characterization of alkali-extracted hemicelluloses from peashrub. Biomass Bioenergy 39, 20–30 (2012). https://doi.org/10.1016/j.biombioe.2010.08.034

    Article  Google Scholar 

  11. Peng, F., Ren, J.-L., Xu, F., Bian, J., Peng, P., Sun, R.-C.: Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food Chem. 58, 1768–1776 (2010). https://doi.org/10.1021/jf9033255

    Article  Google Scholar 

  12. Xu, F., Geng, Z.C., Sun, J.X., Liu, C.F., Ren, J.L., Sun, R.C., Fowler, P., Baird, M.S.: Fractional and structural characterization of hemicelluloses from perennial ryegrass (Lolium perenne) and cocksfoot grass (Dactylis glomerata). Carbohydr. Res. 341, 2073–2082 (2006). https://doi.org/10.1016/j.carres.2006.04.033

    Article  Google Scholar 

  13. Vena, P.F., Brienzo, M., García-Aparicio, M., Görgens, J.F., Rypstra, T.: Dilute sulphuric acid extraction of hemicellulose from Eucalyptus grandis and its effect on kraft and soda-aq pulp and handsheet properties. Cell. Chem. Technol. 49, 819–832 (2015)

    Google Scholar 

  14. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700 (2005). https://doi.org/10.1016/j.procbio.2005.04.006

    Article  Google Scholar 

  15. Anugwom, I., Mäki-Arvela, P., Virtanen, P., Willför, S., Sjöholm, R., Mikkola, J.-P.: Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr. Polym. 87, 2005–2011 (2012). https://doi.org/10.1016/j.carbpol.2011.10.006

    Article  Google Scholar 

  16. Froschauer, C., Hummel, M., Iakovlev, M., Roselli, A., Schottenberger, H., Sixta, H.: Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14, 1741–1750 (2013). https://doi.org/10.1021/bm400106h

    Article  Google Scholar 

  17. Xu, J.-K., Sun, Y.-C., Xu, F., Sun, R.-C.: Characterization of hemicelluloses obtained from partially delignified eucalyptus using ionic liquid pretreatment. BioResources, 8, 1946–1962 (2013). https://doi.org/10.15376/biores.8.2.1946-1962

    Article  Google Scholar 

  18. Janker-Obermeier, I., Sieber, V., Faulstich, M., Schieder, D.: Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Ind. Crops Prod. 39, 198–203 (2012). https://doi.org/10.1016/j.indcrop.2012.02.022

    Article  Google Scholar 

  19. Hromádková, Z., Ebringerová, A., Valachovic, P.: Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrason. Sonochem. 5, 163–168 (1999)

    Article  Google Scholar 

  20. Hromádková, Z., Ebringerová, A.: Ultrasonic extraction of plant materials—investigation of hemicellulose release from buckwheat hulls. Ultrason. Sonochem. 10, 127–133 (2003). https://doi.org/10.1016/S1350-4177(03)00094-4

    Article  Google Scholar 

  21. Fernández-Bolaños, J.: Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour. Technol. 79, 53–61 (2001). https://doi.org/10.1016/S0960-8524(01)00015-3

    Article  Google Scholar 

  22. Saddler, J.N., Wu, M.M., Chang, K., Gregg, D.J., Boussaid, A., Beatson, R.P.: Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl. Biochem. Biotechnol. 77, 47–54 (1999). https://doi.org/10.1385/ABAB:77:1-3:47

    Article  Google Scholar 

  23. Sun, X.F., Xu, F., Sun, R.C., Geng, Z.C., Fowler, P., Baird, M.S.: Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydr. Polym. 60, 15–26 (2005). https://doi.org/10.1016/j.carbpol.2004.11.012

    Article  Google Scholar 

  24. Xiaowei, P., Hongzhang, C.: Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem. 47, 209–215 (2012). https://doi.org/10.1016/j.procbio.2011.10.035

    Article  Google Scholar 

  25. Palm, M., Zacchi, G.: Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 4, 617–623 (2003). https://doi.org/10.1021/bm020112d

    Article  Google Scholar 

  26. Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M.: Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96, 1582–1588 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.05.021

    Article  Google Scholar 

  27. Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., Paquot, M.: Author’s personal copy Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresour. Technol. 121, 221–227 (2012)

    Article  Google Scholar 

  28. Overend, R.P.: Fractionation of lignocellulosics by steam—aqueous pretreatments. Philos. Trans. R. Soc. Lond. A 321, 523–536 (1987)

    Article  Google Scholar 

  29. Goering, H.K.: Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications), pp. 20. Agricultural Research Service, U.S. Department of Agriculture, Washington, D.C. (1970)

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden (2010)

    Google Scholar 

  31. Saeman, J.F., Bubl, J.L., Harris, A.N.D.E.E.: Quantitative saccharification of wood and cellulose. Ind. Eng. Chem. 17, 35–37 (1945). https://doi.org/10.1021/i560137a008

    Article  Google Scholar 

  32. Bakker, R.R., Elbersen, H.W.: Managing ash content and quality in herbaceous biomass: an analysis from plant to product. In 14th European Biomass Conference, Paris, France, October 17–21, 2005, pp. 210–213

  33. García-Aparicio, M., Parawira, W., Van Rensburg, E., Diedericks, D., Galbe, M., Rosslander, C., Zacchi, G., Görgens, J.: Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotechnol. Prog. 27, 641–649 (2011). https://doi.org/10.1002/btpr.580

    Article  Google Scholar 

  34. Zhang, J., Deng, H., Lin, L., Sun, Y., Pan, C., Liu, S.: Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour. Technol. 101, 2311–2316 (2010). https://doi.org/10.1016/j.biortech.2009.11.037

    Article  Google Scholar 

  35. Sun, R., Tomkinson, J.: Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 9, 85–93 (2002). https://doi.org/10.1016/S1350-4177(01)00106-7

    Article  Google Scholar 

  36. Allison, G.G., Morris, C., Clifton-Brown, J., Lister, S.J., Donnison, I.S.: Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass Bioenergy 35, 4740–4747 (2011). https://doi.org/10.1016/j.biombioe.2011.10.008

    Article  Google Scholar 

  37. Hodgson, E.M., Nowakowski, D.J., Shield, I., Riche, A., Bridgwater, A.V., Clifton-Brown, J.C., Donnison, I.S.: Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour. Technol. 102, 3411–3418 (2011). https://doi.org/10.1016/j.biortech.2010.10.017

    Article  Google Scholar 

  38. Vanderghem, C., Richel, A., Jacquet, N., Blecker, C., Paquot, M.: Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polym. Degrad. Stab. 96, 1761–1770 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.07.022

    Article  Google Scholar 

  39. Ebringerová, A., Heinze, T.: Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21, 542–556 (2000)

    Article  Google Scholar 

  40. Bian, J., Peng, F., Peng, X.-P., Xu, F., Sun, R.-C., Kennedy, J.F.: Isolation of hemicelluloses from sugarcane bagasse at different temperatures: structure and properties. Carbohydr. Polym. 88, 638–645 (2012). https://doi.org/10.1016/j.carbpol.2012.01.010

    Article  Google Scholar 

  41. Rabetafika, H.N., Bchir, B., Blecker, C., Paquot, M., Wathelet, B.: Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61, 254–264 (2014). https://doi.org/10.1016/j.biombioe.2013.12.022

    Article  Google Scholar 

  42. Liu, K.-X., Li, H.-Q., Zhang, J., Zhang, Z.-G., Xu, J.: The effect of non-structural components and lignin on hemicellulose extraction. Bioresour. Technol. 214, 755–760 (2016). https://doi.org/10.1016/j.biortech.2016.05.036

    Article  Google Scholar 

  43. Sun, S.N., Yuan, T.Q., Li, M.F., Cao, X.F., Xu, F., Liu, Q.Y.: Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus Affinis). Cell. Chem. Technol. 46, 3–4 (2012)

    Google Scholar 

  44. Wen, J.-L., Xiao, L.-P., Sun, Y.-C., Sun, S.-N., Xu, F., Sun, R.-C., Zhang, X.-L.: Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusa rigida). Carbohydr. Res. 346, 111–120 (2011). https://doi.org/10.1016/j.carres.2010.10.006

    Article  Google Scholar 

Download references

Acknowledgements

Financial support and scholarship for these studies (Project: valorization of banana residues and contribution to local sustainable development) were provided by the Commission Universitaire pour le Développement (CUD) from Belgium. The authors are also grateful to the laboratory of post-harvest technology, CARBAP-Cameroon and also to the research staff from the Industrial Chemistry and Biology laboratory and Analytical Chemistry Laboratory (GxABTech, ULg, Belgium). Magali DELEU thanks the Fond National de la Recherche Scientifique from Belgium for her position as Research Associate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Florian Tiappi Deumaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiappi Deumaga, M.F., Jacquet, N., Vanderghem, C. et al. Fractionation and Structural Characterization of Hemicellulose from Steam-Exploded Banana Rachis. Waste Biomass Valor 11, 2183–2192 (2020). https://doi.org/10.1007/s12649-018-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0457-9

Keywords

Navigation