de Souza, R.P., Girardi, F., Santana, V.S., Fernandes-Machado, N.R.C., Gimenes, M.L.: Vinasse treatment using a vegetable-tannin coagulant and photocatalysis. Acta Sci. Technol. 35, 89–95 (2013). https://doi.org/10.4025/actascitechnol.v35i1.11011
Article
Google Scholar
Yin, C.Y.: Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444 (2010). https://doi.org/10.1016/j.procbio.2010.05.030
Article
Google Scholar
Özacar, M., Şengil, I.A.: Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf. A 229, 85–96 (2003). https://doi.org/10.1016/j.colsurfa.2003.07.006
Article
Google Scholar
Beltrán-Heredia, J., Sánchez-Martín, J., Gómez-Muñoz, M.C.: New coagulant agents from tannin extracts: preliminary optimisation studies. Chem. Eng. J. 162, 1019–1025 (2010). https://doi.org/10.1016/j.cej.2010.07.011
Article
Google Scholar
Graham, N., Gang, F., Fowler, G., Watts, M.: Characterisation and coagulation performance of a tannin-based cationic polymer: a preliminary assessment. Colloids Surf. A 327, 9–16 (2008). https://doi.org/10.1016/j.colsurfa.2008.05.045
Article
Google Scholar
Junior, O.M.C., Barros, M.A.S.D., Pereira, N.C.: Study on coagulation and flocculation for treating effluents of textile industry. Acta Sci. Technol. 35, 83–88 (2013). https://doi.org/10.4025/actascitechnol.v35i1.11685
Article
Google Scholar
Beltrán Heredia, J., Sánchez Martín, J.: Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J. Hazard. Mater. 165, 1215–1218 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.104
Article
Google Scholar
Slavov, A.K.: General characteristics and treatment possibilities of dairy wastewater—a review. Food Technol. Biotechnol. 55, 14–28 (2017). https://doi.org/10.17113/ftb.55.01.17.4520
Article
Google Scholar
Carvalho, F., Prazeres, A.R., Rivas, J.: Cheese whey wastewater: characterization and treatment. Sci. Total Environ. 445–446, 385–396 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.038
Article
Google Scholar
Schofield, P., Mbugua, D.M., Pell, A.N.: Analysis of condensed tannins: a review. Anim. Feed Sci. Technol. 91, 21–40 (2001). https://doi.org/10.1016/S0377-8401(01)00228-0
Article
Google Scholar
Wolf, G., Schneider, R.M., Bongiovani, M.C., Uliana, E.M., do Amaral, A.G.: Application of coagulation/flocculation process of dairy wastewater from conventional treatment using natural coagulant for reuse. Chem. Eng. Trans. 43, 2041–2046 (2015). https://doi.org/10.3303/CET1543341
Article
Google Scholar
Subramani, T., Rajkumar, V., Priyanka, S.: Treatment of dairy wastewater from Salem Aavin using natural coagulants. Int. J. Appl. Innov. Eng. Manag. 6, 263–273 (2017)
Google Scholar
Rodrigues, V., Ferreira, F., Souza, J.A., De Cardoso, G., Gustavo, L., Guimarães, D.L., Brandão, R.M., Souza, R.V., Soares, L.I., Oliveira, J., Cravo, F.D.C., Nelson, D.L.: Evaluation of the coagulating potential of the crude extract from the barbatimão bark for the treatment of dairy effluents. Am. J. Plant Sci. (2016). https://doi.org/10.4236/ajps.2016.713159
Article
Google Scholar
US-EPA: CFR 40 part 503—standards for the use or disposal of sewage sludge. US-EPA, Washington, DC (1993)
Google Scholar
US-EPA: SW-846, Method 1311, USA (1992)
US-EPA: CFR 40 part 261—identification and listing of hazardous waste. US-EPA, Washington, DC (1984)
Google Scholar
US-EPA: Edition of the drinking water standards and health advisories. US-EPA, Washington, DC (2012)
Google Scholar
WHO: Guidelines for drinking-water quality. Genebra, Suíça (2011)
Google Scholar
APHA: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC (2012)
Google Scholar
Machado, L.R.D., de Trannin, I.C.: B.: Agricultural potential of an industrial sewage sludge in compliance with CONAMA Resolution no. 375/2006. Semin. Ciências Agrárias. 36, 4177 (2015). https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4177
Article
Google Scholar
Srinivasan, P., Sarmah, A.K., Smernik, R., Das, O., Farid, M., Gao, W.: A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci. Total Environ. 512–513, 495–505 (2015). https://doi.org/10.1016/j.scitotenv.2015.01.068
Article
Google Scholar
Esteller, M.V., Martínez-Valdés, H., Garrido, S., Uribe, Q.: Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manag. 29, 1936–1944 (2009). https://doi.org/10.1016/j.wasman.2008.12.025
Article
Google Scholar
Granato, T.C., Pietz, R.I., Gschwind, J., Lue-Hing, C.: Mercury in soils and crops from fields receiving high cumulative sewage sludge applications: validation of U.S. EPA’s risk assessment for human ingestion. Water Air Soil Pollut. 80, 1119–1127 (1995)
Article
Google Scholar
Yang, Y., Wang, Y., Westerhoff, P., Hristovski, K., Jin, V.L., Johnson, M.-V.V., Arnold, J.G.: Metal and nanoparticle occurrence in biosolid-amended soils. Sci. Total Environ. 485–486, 441–449 (2014)
Article
Google Scholar
Lu, Q., He, Z.L., Stoffella, P.J.: Land application of biosolids in the USA: a review. Appl. Environ. Soil Sci. (2012). https://doi.org/10.1155/2012/201462
Article
Google Scholar
Lacramioara, R., Harja, M., Suteu, D., Dabija, A., Favier, L.: Pesticide residues contamination of milk and dairy products. A case study: Bacau district area, Romania. J. Environ. Prot. Ecol. 17, 1229–1241 (2016)
Google Scholar
Kotinagu, K., Krishnaiah, N.: Organochlorine and organophosphorus pesticide residues in fodder and milk samples along Musi river belt, India. Vet. World. 8, 545–550 (2015). https://doi.org/10.14202/vetworld.2015.545-550
Article
Google Scholar
Shete, B.S., Shinkar, N.P.: Comparative study of various treatments for dairy industry wastewater. IOSR J. Eng. 3, 42–47 (2013). https://doi.org/10.9790/3021-03844247
Article
Google Scholar
Xia, Z., Singh, A., Kiratitanavit, W., Mosurkal, R., Kumar, J., Nagarajan, R.: Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochim. Acta. 605, 77–85 (2015). https://doi.org/10.1016/j.tca.2015.02.016
Article
Google Scholar
Tondi, G., Pizzi, A., Masson, E., Celzard, A.: Analysis of gases emitted during carbonization degradation of polyflavonoid tannin/furanic rigid foams. Polym. Degrad. Stab. 93, 1539–1543 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.016
Article
Google Scholar
Schoonen, J.W., Sales, G.M.: Determination of polyphenols in wines by reaction with 4-aminoantipyrine and photometric flow-injection analysis. Anal. Bioanal. Chem. 372, 822–828 (2002). https://doi.org/10.1007/s00216-002-1267-1
Article
Google Scholar
Bendelow, V.M.: Automated procedure for the estimation of total polyphenol content in beer, wort, malt, and barley. J. Am. Soc. Brew. Chem. 35, 150–152 (1977). https://doi.org/10.1094/ASBCJ-35-0150
Article
Google Scholar
Tutas, M., Saglam, M., Yüksel, M.: Investigation of pyrolysis products of polyacrylamide by pyrolysis-gas chromatography. J. Anal. Appl. Pyrolysis. 22, 129–137 (1991). https://doi.org/10.1016/0165-2370(91)85012-V
Article
Google Scholar
Nasralla, S.N., Ghoneim, A.I., Khalifa, A.E., Gad, M.Z., Abdel-Naim, A.B.: Lactoperoxidase catalyzes in vitro activation of acrylonitrile to cyanide. Toxicol. Lett. 191, 347–352 (2009). https://doi.org/10.1016/j.toxlet.2009.10.005
Article
Google Scholar
Marks, N.E., Grandison, A.S., Lewis, M.J.: Challenge testing of the lactoperoxidase system in pasteurized milk. J. Appl. Microbiol. 91, 735–741 (2001)
Article
Google Scholar
Zarei, M., Shahriari, A., Tarazoudar, F., Paknejad, M.: Comparing the activity and thermal inactivation behavior of lactoperoxidase in iranian cow and buffalo milk and whey. J. Food Qual. Hazard Control. 3, 141–145 (2016)
Google Scholar