Skip to main content

Environmental and Agronomical Aspects of Sludge Produced from Tannin-Based Coagulants in Dairy Industry Wastewater Treatment

Abstract

A study was carried out of the environmental and agronomic features of the sludge generated by a dissolved air flotation process applying a tannin-based coagulant in a dairy factory. First, the chemical and physical characteristics of the sludge were examined. Subsequently, a solubilization test was performed to evaluate the potential of groundwater contamination after the application of sludge on soil. The data obtained were compared to the United States Environmental Protection Agency (US-EPA) criteria for evaluation and classification of solid residues for land application. The results show that the studied sludge is a non-hazardous waste, and all evaluated parameters are lower than the maximum reference values according to international criteria. Based on the set of parameters which were evaluated, no organic pollutants were found. Additionally, the agronomic characterization shows good potential for agricultural purposes. However, in the solubilization test, chemicals such as phenols, cyanide, nitrate and fluoride were solubilized from the studied residue. As a result, the water showed concentrations above the limits required by the international criteria for drinking water established by US-EPA and World Health Organization. In conclusion, although tannin-based coagulants produce sludge with the potential for agronomic applications, some limits have to be considered to avoid environmental impacts.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. de Souza, R.P., Girardi, F., Santana, V.S., Fernandes-Machado, N.R.C., Gimenes, M.L.: Vinasse treatment using a vegetable-tannin coagulant and photocatalysis. Acta Sci. Technol. 35, 89–95 (2013). https://doi.org/10.4025/actascitechnol.v35i1.11011

    Article  Google Scholar 

  2. Yin, C.Y.: Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444 (2010). https://doi.org/10.1016/j.procbio.2010.05.030

    Article  Google Scholar 

  3. Özacar, M., Şengil, I.A.: Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf. A 229, 85–96 (2003). https://doi.org/10.1016/j.colsurfa.2003.07.006

    Article  Google Scholar 

  4. Beltrán-Heredia, J., Sánchez-Martín, J., Gómez-Muñoz, M.C.: New coagulant agents from tannin extracts: preliminary optimisation studies. Chem. Eng. J. 162, 1019–1025 (2010). https://doi.org/10.1016/j.cej.2010.07.011

    Article  Google Scholar 

  5. Graham, N., Gang, F., Fowler, G., Watts, M.: Characterisation and coagulation performance of a tannin-based cationic polymer: a preliminary assessment. Colloids Surf. A 327, 9–16 (2008). https://doi.org/10.1016/j.colsurfa.2008.05.045

    Article  Google Scholar 

  6. Junior, O.M.C., Barros, M.A.S.D., Pereira, N.C.: Study on coagulation and flocculation for treating effluents of textile industry. Acta Sci. Technol. 35, 83–88 (2013). https://doi.org/10.4025/actascitechnol.v35i1.11685

    Article  Google Scholar 

  7. Beltrán Heredia, J., Sánchez Martín, J.: Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J. Hazard. Mater. 165, 1215–1218 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.104

    Article  Google Scholar 

  8. Slavov, A.K.: General characteristics and treatment possibilities of dairy wastewater—a review. Food Technol. Biotechnol. 55, 14–28 (2017). https://doi.org/10.17113/ftb.55.01.17.4520

    Article  Google Scholar 

  9. Carvalho, F., Prazeres, A.R., Rivas, J.: Cheese whey wastewater: characterization and treatment. Sci. Total Environ. 445–446, 385–396 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.038

    Article  Google Scholar 

  10. Schofield, P., Mbugua, D.M., Pell, A.N.: Analysis of condensed tannins: a review. Anim. Feed Sci. Technol. 91, 21–40 (2001). https://doi.org/10.1016/S0377-8401(01)00228-0

    Article  Google Scholar 

  11. Wolf, G., Schneider, R.M., Bongiovani, M.C., Uliana, E.M., do Amaral, A.G.: Application of coagulation/flocculation process of dairy wastewater from conventional treatment using natural coagulant for reuse. Chem. Eng. Trans. 43, 2041–2046 (2015). https://doi.org/10.3303/CET1543341

    Article  Google Scholar 

  12. Subramani, T., Rajkumar, V., Priyanka, S.: Treatment of dairy wastewater from Salem Aavin using natural coagulants. Int. J. Appl. Innov. Eng. Manag. 6, 263–273 (2017)

    Google Scholar 

  13. Rodrigues, V., Ferreira, F., Souza, J.A., De Cardoso, G., Gustavo, L., Guimarães, D.L., Brandão, R.M., Souza, R.V., Soares, L.I., Oliveira, J., Cravo, F.D.C., Nelson, D.L.: Evaluation of the coagulating potential of the crude extract from the barbatimão bark for the treatment of dairy effluents. Am. J. Plant Sci. (2016). https://doi.org/10.4236/ajps.2016.713159

    Article  Google Scholar 

  14. US-EPA: CFR 40 part 503—standards for the use or disposal of sewage sludge. US-EPA, Washington, DC (1993)

    Google Scholar 

  15. US-EPA: SW-846, Method 1311, USA (1992)

  16. US-EPA: CFR 40 part 261—identification and listing of hazardous waste. US-EPA, Washington, DC (1984)

    Google Scholar 

  17. US-EPA: Edition of the drinking water standards and health advisories. US-EPA, Washington, DC (2012)

    Google Scholar 

  18. WHO: Guidelines for drinking-water quality. Genebra, Suíça (2011)

    Google Scholar 

  19. APHA: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC (2012)

    Google Scholar 

  20. Machado, L.R.D., de Trannin, I.C.: B.: Agricultural potential of an industrial sewage sludge in compliance with CONAMA Resolution no. 375/2006. Semin. Ciências Agrárias. 36, 4177 (2015). https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4177

    Article  Google Scholar 

  21. Srinivasan, P., Sarmah, A.K., Smernik, R., Das, O., Farid, M., Gao, W.: A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci. Total Environ. 512–513, 495–505 (2015). https://doi.org/10.1016/j.scitotenv.2015.01.068

    Article  Google Scholar 

  22. Esteller, M.V., Martínez-Valdés, H., Garrido, S., Uribe, Q.: Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manag. 29, 1936–1944 (2009). https://doi.org/10.1016/j.wasman.2008.12.025

    Article  Google Scholar 

  23. Granato, T.C., Pietz, R.I., Gschwind, J., Lue-Hing, C.: Mercury in soils and crops from fields receiving high cumulative sewage sludge applications: validation of U.S. EPA’s risk assessment for human ingestion. Water Air Soil Pollut. 80, 1119–1127 (1995)

    Article  Google Scholar 

  24. Yang, Y., Wang, Y., Westerhoff, P., Hristovski, K., Jin, V.L., Johnson, M.-V.V., Arnold, J.G.: Metal and nanoparticle occurrence in biosolid-amended soils. Sci. Total Environ. 485–486, 441–449 (2014)

    Article  Google Scholar 

  25. Lu, Q., He, Z.L., Stoffella, P.J.: Land application of biosolids in the USA: a review. Appl. Environ. Soil Sci. (2012). https://doi.org/10.1155/2012/201462

    Article  Google Scholar 

  26. Lacramioara, R., Harja, M., Suteu, D., Dabija, A., Favier, L.: Pesticide residues contamination of milk and dairy products. A case study: Bacau district area, Romania. J. Environ. Prot. Ecol. 17, 1229–1241 (2016)

    Google Scholar 

  27. Kotinagu, K., Krishnaiah, N.: Organochlorine and organophosphorus pesticide residues in fodder and milk samples along Musi river belt, India. Vet. World. 8, 545–550 (2015). https://doi.org/10.14202/vetworld.2015.545-550

    Article  Google Scholar 

  28. Shete, B.S., Shinkar, N.P.: Comparative study of various treatments for dairy industry wastewater. IOSR J. Eng. 3, 42–47 (2013). https://doi.org/10.9790/3021-03844247

    Article  Google Scholar 

  29. Xia, Z., Singh, A., Kiratitanavit, W., Mosurkal, R., Kumar, J., Nagarajan, R.: Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochim. Acta. 605, 77–85 (2015). https://doi.org/10.1016/j.tca.2015.02.016

    Article  Google Scholar 

  30. Tondi, G., Pizzi, A., Masson, E., Celzard, A.: Analysis of gases emitted during carbonization degradation of polyflavonoid tannin/furanic rigid foams. Polym. Degrad. Stab. 93, 1539–1543 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.016

    Article  Google Scholar 

  31. Schoonen, J.W., Sales, G.M.: Determination of polyphenols in wines by reaction with 4-aminoantipyrine and photometric flow-injection analysis. Anal. Bioanal. Chem. 372, 822–828 (2002). https://doi.org/10.1007/s00216-002-1267-1

    Article  Google Scholar 

  32. Bendelow, V.M.: Automated procedure for the estimation of total polyphenol content in beer, wort, malt, and barley. J. Am. Soc. Brew. Chem. 35, 150–152 (1977). https://doi.org/10.1094/ASBCJ-35-0150

    Article  Google Scholar 

  33. Tutas, M., Saglam, M., Yüksel, M.: Investigation of pyrolysis products of polyacrylamide by pyrolysis-gas chromatography. J. Anal. Appl. Pyrolysis. 22, 129–137 (1991). https://doi.org/10.1016/0165-2370(91)85012-V

    Article  Google Scholar 

  34. Nasralla, S.N., Ghoneim, A.I., Khalifa, A.E., Gad, M.Z., Abdel-Naim, A.B.: Lactoperoxidase catalyzes in vitro activation of acrylonitrile to cyanide. Toxicol. Lett. 191, 347–352 (2009). https://doi.org/10.1016/j.toxlet.2009.10.005

    Article  Google Scholar 

  35. Marks, N.E., Grandison, A.S., Lewis, M.J.: Challenge testing of the lactoperoxidase system in pasteurized milk. J. Appl. Microbiol. 91, 735–741 (2001)

    Article  Google Scholar 

  36. Zarei, M., Shahriari, A., Tarazoudar, F., Paknejad, M.: Comparing the activity and thermal inactivation behavior of lactoperoxidase in iranian cow and buffalo milk and whey. J. Food Qual. Hazard Control. 3, 141–145 (2016)

    Google Scholar 

Download references

Acknowledgements

The funding was supported by FAPESC/BRAZIL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marciel Dela Justina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dela Justina, M., Skoronski, E. Environmental and Agronomical Aspects of Sludge Produced from Tannin-Based Coagulants in Dairy Industry Wastewater Treatment. Waste Biomass Valor 11, 1385–1392 (2020). https://doi.org/10.1007/s12649-018-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0403-x

Keywords

  • Dairy sludge
  • Tannin-based coagulant
  • Sludge characterization
  • Leaching and solubilization test
  • Agronomic features
  • Environmental features