Skip to main content

Advertisement

Log in

Efficient Biocatalytic Conversion of Stranded Green Macroalgal Biomass Using a Specific Cellulases-Based Cocktail

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A specific macroalgal biomass decomposing fungus SL1 newly isolated and identified as Aspergillus fumigatus was found to be an efficient cellulases producer. This strain when cultivated on the whole green macroalgae as sole carbon source permitted the production of specific cellulases (specific activities of 30 and 33 U/mg of proteins for endoglucanase and β-glucosidase, respectively) different from commercial ones as shown by zymography. The application of the produced cellulases-based enzymatic cocktail for the saccharification of alkali pretreated Ulva sp. biomass yielded of 58%. This saccharification rate was optimized using response surface methodology (RSM). An increase of 36% in saccharification yield was obtained under optimized conditions (13 U CMCase, 4% substrate and 135 rpm agitation) which agreed with model predictions. The biocatalytic conversion using specific fungal cellulases may be a promising approach for the biodegradation of stranded macroalgae and its valorization mostly for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adsul, M., Ghule, J., Shaikh, H., Singh, R., Bastawde, K., Gokhale, D., Varma, A.: Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydr. Polym. 62, 6–10 (2005)

    Article  Google Scholar 

  2. Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013). https://doi.org/10.1016/j.procbio.2013.06.019

    Article  Google Scholar 

  3. Ben Yahmed, N., Carrere, H., Marzouki, M.N., Smaali, I.: Enhancement of biogas production from Ulva sp. by using solid-state fermentation as biological pretreatment. Algal Res. 27, 206–214 (2017). https://doi.org/10.1016/j.algal.2017.09.005

    Article  Google Scholar 

  4. Ben Yahmed, N., Jmel, M.A., Ben Alaya, M., Bouallagui, H., Marzouki, M.N., Smaali, I.: A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas energy. Convers. Manag. 119, 257–265 (2016). https://doi.org/10.1016/j.enconman.2016.04.046

    Article  Google Scholar 

  5. Bischof, R., Fourtis, L., Limbeck, A., Gamauf, C., Seiboth, B., Kubicek, C.P.: Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol. Biofuels 6, 127 (2013)

    Article  Google Scholar 

  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  7. Chen, M., Zhao, J., Xia, L.: Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411–415 (2008)

    Article  Google Scholar 

  8. Costa, J.C., Goncalves, P.R., Nobre, A., Alves, M.M.: Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour. Technol. 114, 320–326 (2012). https://doi.org/10.1016/j.biortech.2012.03.011

    Article  Google Scholar 

  9. El-Naggar, M.M., Abdul-Raouf, U.M., Ibrahim, H.A.H., El-Sayed, W.M.M.: Saccharification of Ulva lactuca via Pseudoalteromonas piscicida for biofuel production. J. Energy Nat. Resour. 3, 77 (2014). https://doi.org/10.11648/j.jenr.20140306.11

    Article  Google Scholar 

  10. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Article  Google Scholar 

  11. Grigorevski-Lima, A.L., Da Vinha, F.N., Souza, D.T., Bispo, A.S., Bon, E.P., Coelho, R.R., Nascimento, R.P.: Aspergillus fumigatus thermophilic and acidophilic endoglucanases. Appl. Biochem. Biotechnol. 155, 321–329 (2009). https://doi.org/10.1007/s12010-008-8482-y

    Article  Google Scholar 

  12. Han, W., Clarke, W., Pratt, S.: Composting of waste algae: a review. Waste Manag. 34, 1148–1155 (2014). https://doi.org/10.1016/j.wasman.2014.01.019

    Article  Google Scholar 

  13. Hari Krishna, S., Chowdary, G.: Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J. Agric. Food Chem. 48, 1971–1976 (2000)

    Article  Google Scholar 

  14. Jard, G., Dumas, C., Delgenes, J.P., Marfaing, H., Sialve, B., Steyer, J.P., Carrère, H.: Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79, 253–258 (2013). https://doi.org/10.1016/j.bej.2013.08.011

    Article  Google Scholar 

  15. Jard, G., Marfaing, H., Carrere, H., Delgenes, J.P., Steyer, J.P., Dumas, C.: French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresour. Technol. 144, 492–498 (2013). https://doi.org/10.1016/j.biortech.2013.06.114

    Article  Google Scholar 

  16. Jeya, M., Zhang, Y.W., Kim, I.W., Lee, J.K.: Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol. 100, 5155–5161 (2009). https://doi.org/10.1016/j.biortech.2009.05.040

    Article  Google Scholar 

  17. Jmel, M.A., Anders, N., Ben Yahmed, N., Schmitz, C., Marzouki, M.N., Spiess, A., Smaali, I.: Variations in physicochemical properties and bioconversion efficiency of Ulva lactuca Polysaccharides after different biomass pretreatment techniques. Appl. Biochem. Biotechnol. 184, 777–793 (2018). https://doi.org/10.1007/s12010-017-2588-z

    Article  Google Scholar 

  18. Jones, C.S., Mayfield, S.P.: Algae biofuels: versatility for the future of bioenergy. Curr. Opin. Biotechnol. 23, 346–351 (2012). https://doi.org/10.1016/j.copbio.2011.10.013

    Article  Google Scholar 

  19. Kaar, W., Gutierrez, C., Kinoshita, C.: Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenerg. 14, 277–287 (1998)

    Article  Google Scholar 

  20. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 57, 503–507 (2008). https://doi.org/10.1007/s00284-008-9276-8

    Article  Google Scholar 

  21. Kumar, S., Sharma, H.K., Sarkar, B.C.: Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci. Biotechnol. 20, 1289–1298 (2011). https://doi.org/10.1007/s10068-011-0178-3

    Article  Google Scholar 

  22. Liu, D., Zhang, R., Yang, X., Wu, H., Xu, D., Tang, Z., Shen, Q.: Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 65, 717–725 (2011). https://doi.org/10.1016/j.ibiod.2011.04.005

    Article  Google Scholar 

  23. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002)

    Article  Google Scholar 

  24. Mandels, M., Weber, J.: The production of cellulases. Adv. Chem. 95, 391–414 (1969)

    Article  Google Scholar 

  25. Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., Madamwar, D.: Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int. Biodeterior. Biodegrad. 78, 24–33 (2013). https://doi.org/10.1016/j.ibiod.2012.12.002

    Article  Google Scholar 

  26. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  27. Möller, E., Bahnweg, G., Sandermann, H., Geiger, H.: A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucl. Acids Res. 20, 6115 (1992)

    Article  Google Scholar 

  28. Neifar, M., Chatter, R., Chouchane, H., Genouiz, R., Jaouani, A., Slaheddine Masmoudi, A., Cherif, A.: Optimization of enzymatic saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third generation bioethanol. AIMS Bioeng. 3, 400–411 (2016). https://doi.org/10.3934/bioeng.2016.3.400

    Article  Google Scholar 

  29. Noratiqah, K., Madihah, M.S., Aisyah, B.S., Eva, M.S., Suraini, A.A., Kamarulzaman, K.: Statistical optimization of enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochem. Eng. J. 75, 8–20 (2013). https://doi.org/10.1016/j.bej.2013.03.007

    Article  Google Scholar 

  30. Olfa, E., Mondher, M., Issam, S., Ferid, L., Nejib, M.M.: Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31, 96–107 (2007)

    Article  Google Scholar 

  31. Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13, 81–84 (2003)

    Article  Google Scholar 

  32. Saha, B.C., Cotta, M.A.: Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenerg. 32, 971–977 (2008)

    Article  Google Scholar 

  33. Saha, B.C., Freer, S.N., Bothast, R.J.: Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol. 60, 3774–3780 (1994)

    Article  Google Scholar 

  34. Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S.T., Roslander, C., Lilholt, H., Bjerre, A.B.: Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol–comparison of five pretreatment technologies. Bioresour. Technol.. 140, 36–42 (2013). https://doi.org/10.1016/j.biortech.2013.04.060

    Article  Google Scholar 

  35. Shenef, A., El-Tanash, A., Atia, N.: Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran research. J. Microbiol. 5, 199–211 (2010)

    Google Scholar 

  36. Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46, 541–549 (2010). https://doi.org/10.1016/j.enzmictec.2010.03.010

    Article  Google Scholar 

  37. Smaali, M., Gargouri, M., Limmam, F., Maugard, T., Legoy, M., Marzouki, N.: A. β.-glucosidase from Sclerotinia sclerotiorum: biochemical characterization and use in oligosaccharides synthesis. Appl. Biochem. Biotechnol. 112, 63–78 (2004)

    Article  Google Scholar 

  38. Smaali, M.I., Gargouri, M., Limam, F., Fattouch, S., Maugard, T., Legoy Marie, D., Marzouki, N.: Production, purification, and biochemical characterization of two β-glucosidases from Sclerotinia sclerotiorum. Appl. Biochem. Biotechnol. 111, 29–39 (2003)

    Article  Google Scholar 

  39. Sohail, M., Ahmad, A., Khan, S.A.: Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech 6, 103 (2016). https://doi.org/10.1007/s13205-016-0420-z

    Article  Google Scholar 

  40. Sohail, M., et al.: Distribution of hydrolytic enzymes among native fungi: Aspergillus the pre-dominant genus of hydrolase producer. Pak. J. Bot. 41, 2567–2582 (2009)

    Google Scholar 

  41. Srivastava, N., et al.: Applications of fungal cellulases in biofuel production: advances and limitations. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.08.074

    Article  Google Scholar 

  42. Sukumaran, R.K., Singhania, R.R., Pandey, A.: Microbial cellulases-production, applications and challenges. J. Sci. Ind. Res. 64, 832–844 (2005)

    Google Scholar 

  43. Sun, X., Liu, Z., Zheng, K., Song, X., Qu, Y.: The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol. 42, 560–567 (2008)

    Article  Google Scholar 

  44. Trivedi, N., Gupta, V., Reddy, C.R., Jha, B.: Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour. Technol. 150, 106–112 (2013). https://doi.org/10.1016/j.biortech.2013.09.103

    Article  Google Scholar 

  45. Trivedi, N., Reddy, C.R.K., Radulovich, R., Jha, B.: Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res. 9, 48–54 (2015). https://doi.org/10.1016/j.algal.2015.02.025

    Article  Google Scholar 

  46. Vlasenko, E.Y., Ding, H., Labavitch, J.M., Shoemaker, S.P.: Enzymatic hydrolysis of pretreated rice straw. Bioresour. Technol. 59, 109–119 (1997). https://doi.org/10.1016/S0960-8524(96)00169-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Tunisian Ministry of Higher Education and Scientific Research - University of Carthage (Tunisia) for financial support (project LR11ES24) and for concession of a research grant for Nesrine Ben Yahmed’s Ph.D. We express our gratitude to Maher Chelly who helped to the determination of the preliminary range of the saccharification variables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Smaali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Yahmed, N., Berrejeb, N., Jmel, M.A. et al. Efficient Biocatalytic Conversion of Stranded Green Macroalgal Biomass Using a Specific Cellulases-Based Cocktail. Waste Biomass Valor 11, 211–222 (2020). https://doi.org/10.1007/s12649-018-0397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0397-4

Keywords

Navigation