Abstract
There has been a growing interest in the recovery and valorization of chemical products from biomass wastes. In the present study pomace from sour cherry liquor was analyzed in order to evaluate its potential for valorization. Two different samples of liquor pomace and two different extraction methods were screened through determination of their phenolic content (HPLC/PDA) and antioxidant activity (FRAP and DPPH assay). Results obtained showed that skins (pomace without kernel) presented a higher extraction yield, polyphenolic content and antioxidant activity than pomace with kernel (skin+kernel). Decoction at 100 °C allowed a higher recovery of phenolic compounds, but, maceration with water at 25 °C was considered a more sustainable process. HPLC analyses allowed the identification and quantification of phenolic compounds such as cyanidin-3-O-glucoside, (+)catechin and (−)epicatechin and some phenolic acids. The analyzed by-products might be a promising source of natural polyphenolic compounds, which can act as a new eco-friendly antioxidant ingredient, with potential to be incorporated in nutraceutical formulations or applied in food or cosmetic industries. The residues remaining after extraction have a high calorific value and fat content, suggesting its valorization as a source of energy or through the extraction of value-added oil.

Similar content being viewed by others
References
European Environment Agency: Food security and environmental impacts. EEA. http://www.eea.europa.eu/themes/agriculture/greening-agricultural-policy/food-security-and-environmental-impacts (2014). Accessed 24 Feb 2017
Yılmaz, F.M., Karaaslan, M., Vardin, H.: Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 52(5), 2851–2859 (2015). https://doi.org/10.1007/s13197-014-1345-3
European Environment Agency: Circular economy in Europe. Developing the knowledge base. https://www.eea.europa.eu/publications/circular-economy-in-europe (2016). Accessed 20 July 2017
Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean. Prod. 114, 11–32 (2016)
Sauvé, S., Bernard, S., Sloan, P.: Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research. Environ. Dev. 17, 48–56 (2016)
Bonilla, F., Mayen, M., Merida, J., Medina, M.: Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66(2), 209–215 (1999). https://doi.org/10.1016/S0308-8146(99)00046-1
Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L., Haroutounian, S.A.: Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 43(3), 805–813 (2010). https://doi.org/10.1016/j.foodres.2009.11.017
Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46(2), 505–513 (2012). https://doi.org/10.1016/j.foodres.2011.09.027
Kumcuoglu, S., Yilmaz, T., Tavman, S.: Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51(12), 4102–4107 (2014). https://doi.org/10.1007/s13197-013-0926-x
Boonchu, T., Utama-ang, N.: Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. J Food Sci. Technol. 52(2), 783–792 (2013). https://doi.org/10.1007/s13197-013-1079-7
Wang, R., Lechtenberg, M., Sendker, J., Petereit, F., Deters, A., Hensel, A.: Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes. Fitoterapia 84, 308–317 (2013). https://doi.org/10.1016/j.fitote.2012.12.020
Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.C., Lorquin, J., Delattre, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75(4), 501–507 (2001). https://doi.org/10.1016/S0308-8146(01)00227-8
Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lesage-Meessen, L.: Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem. 40(5), 1855–1862 (2005). https://doi.org/10.1016/j.procbio.2004.06.054
De Marco, E., Savarese, M., Paduano, A., Sacchi, R.: Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104(2), 858–867 (2007). https://doi.org/10.1016/j.foodchem.2006.10.005
Bouaziz, M., Lassoued, S., Bouallagui, Z., Smaoui, S., Gargoubi, A., Dhouib, A., Sayadi, S.: Synthesis and recovery of high bioactive phenolics from table-olive brine process wastewater. Bioorg. Med. Chem. 16(20), 9238–9246 (2008). https://doi.org/10.1016/j.bmc.2008.09.012
Sudjana, A.N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Hammer, K.A.: Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 33(5), 461–463 (2009). https://doi.org/10.1016/j.ijantimicag.2008.10.026
Ignat, I., Volf, I., Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4), 1821–1835 (2011). https://doi.org/10.1016/j.foodchem.2010.12.026
Moure, A., Cruz, J.M., Franco, D., Domínguez, J.M., Sineiro, J., Domínguez, H., Parajó, J.C.: Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001). https://doi.org/10.1016/S0308-8146(00)00223-5
Kumar, P.S., Kumar, N.A., Sivakumar, R., Kaushik, C.: Experimentation on solvent extraction of polyphenols from natural waste. J. Mater. Sci. 44(21), 5894–5899 (2009). https://doi.org/10.1007/s10853-009-3834-8
Wijngaard, H.H., Rößle, C., Brunton, N.: A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116(1), 202–207 (2009). https://doi.org/10.1016/j.foodchem.2009.02.033
Laroze, L.E., Díaz-Reinoso, B., Moure, A., Zúñiga, M.E., Domínguez, H.: Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 231(5), 669–677 (2010). https://doi.org/10.1007/s00217-010-1320-9
Bocco, A., Cuvelier, M.E., Richard, H., Berset, C.: Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 46(6), 2123–2129 (1998). https://doi.org/10.1021/jf9709562
Schieber, A., Hilt, P., Streker, P., Endreß, H.U., Rentschler, C., Carle, R.: A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4(1), 99–107 (2003). https://doi.org/10.1016/S1466-8564(02)00087-5
Wolfe, K.L., Liu, R.H.: Apple peels as a value-added food ingredient. J. Agric. Food Chem. 51(6), 1676–1683 (2003). https://doi.org/10.1021/jf025916z
Chaovanalikit, A., Wrolstad, R.E.: Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci. 69(1), FCT67–FCT72 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb17858
Fan, G., Han, Y., Gu, Z., Chen, D.: Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT-Food Sci. Technol. 41(1), 155–160 (2008). https://doi.org/10.1016/j.lwt.2007.01.019
Frutóbidos: Personal communication, Óbidos, Portugal (2013)
Larrosa, M., Llorach, R., Espín, J.C., Tomás-Barberán, F.A.: Increase of antioxidant activity of tomato juice upon functionalisation with vegetable byproduct extracts. LWT-Food Sci. Technol. 35(6), 532–542 (2002). https://doi.org/10.1006/fstl.2002.0907
Lapornik, B., Prošek, M., Golc Wondra, A.: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2), 214–222 (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.036
McCune, L.M., Kubota, C., Stendell-Hollis, N.R., Thomson, C.A.: Cherries and health: a review. Crit. Rev. Food Sci. Nutr. 51(1), 1–12 (2010). https://doi.org/10.1111/j.1750-3841.2011.02150.x
Maurício, E., Rosado, C., Duarte, M.P., Lanza, A.M.D.: Application of Óbidos “Ginjinha” by-products in topical formulations: a preliminary study. Biomed. Biopharm. Res. 1(10), 83–90 (2013)
Wojdyło, A., Nowicka, P., Laskowski, P., Oszmiański, J.: Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 62(51), 12332–12345 (2014). https://doi.org/10.1021/jf504023z
Tsanova-Savova, S., Ribarova, F., Gerova, M.: (+)-Catechin and (−)epicatechin in Bulgarian fruits. J. Food Compos. Anal. 18(7), 691–698 (2005). https://doi.org/10.1016/j.jfca.2004.06.008
Piccolella, S., Fiorentino, A., Pacifico, S., D’Abrosca, B., Uzzo, P., Monaco, P.: Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanolic extract of ripe fruits. J. Agric. Food Chem. 56(6), 1928–1935 (2008). https://doi.org/10.1021/jf0734727
Galluzzo, P., Martini, C., Bulzomi, P., Leone, S., Bolli, A., Pallottini, V., Marino, M.: Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol. Nutr. Food Res. 53(6), 699–708 (2009). https://doi.org/10.1002/mnfr.200800239
Serra, A.T., Duarte, R.O., Bronze, M.R., Duarte, C.M.: Identification of bioactive response in traditional cherries from Portugal. Food Chem. 125(2), 318–325 (2011). https://doi.org/10.1016/j.foodchem.2010.07.088
Ferretti, G., Bacchetti, T., Belleggia, A., Neri, D.: Cherry antioxidants: from farm to table. Molecules 15(10), 6993–7005 (2010). https://doi.org/10.3390/molecules15106993
Seeram, N.P., Momin, R.A., Nair, M.G., Bourquin, L.D.: Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8(5), 362–369 (2001). https://doi.org/10.1078/0944-7113-00053
Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R.: Analysis and biological activities of anthocyanins. Phytochemistry 64(5), 923–933 (2003). https://doi.org/10.1016/S0031-9422(03)00438-2
Blando, F., Gerardi, C., Nicoletti, I.: Sour cherry (Prunus cerasus L.) anthocyanins as ingredients for functional foods. BioMed Res. Int. 2004(5), 253–258 (2004). https://doi.org/10.1155/S1110724304404136
Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J.A., Bagchi, D.: Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51(6), 675–683 (2007). https://doi.org/10.1002/mnfr.200700002
Siddiq, M., Iezzoni, A., Khan, A., Breen, P., Sebolt, A.M., Dolan, K.D., Ravi, R.: Characterization of new tart cherry (Prunus cerasus L.): selections based on fruit quality, total anthocyanins, and antioxidant capacity. Int. J. Food Prop. 14(2), 471–480 (2011). https://doi.org/10.1080/10942910903277697
Mulabagal, V., Lang, G.A., DeWitt, D.L., Dalavoy, S.S., Nair, M.G.: Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57(4), 1239–1246 (2009). https://doi.org/10.1021/jf8032039
Seymour, E.M., Lewis, S.K., Urcuyo-Llanes, D.E., Tanone, I.I., Kirakosyan, A., Kaufman, P.B., Bolling, S.F.: Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J. Med. Food. 12(5), 935–942 (2009). https://doi.org/10.1089/jmf.2008.0270
Liu, Q., Cai, W., Shao, X.: Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta 77(2), 679–683 (2008). https://doi.org/10.1016/j.talanta.2008.07.011
Nowicka, P., Wojdyło, A., Lech, K., Figiel, A.: Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food Bioprocess Technol. 8(10), 2076–2095 (2015). https://doi.org/10.1007/s11947-015-1561-5
Kim, D.O., Heo, H.J., Kim, Y.J., Yang, H.S., Lee, C.Y.: Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 53(26), 9921–9927 (2005). https://doi.org/10.1021/jf0518599
Bak, I., Lekli, I., Juhasz, B., Nagy, N., Varga, E., Varadi, J., Tosaki, A.: Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1329–H1336 (2006). https://doi.org/10.1152/ajpheart.01243.2005
Koşar, M., Göger, F., Can Başer, K.H.: In vitro antioxidant properties and phenolic composition of Salvia virgata Jacq. from Turkey. J. Agric. Food Chem. 56(7), 2369–2374 (2008). https://doi.org/10.1021/jf073516b
Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10), 4290–4302 (2005). https://doi.org/10.1021/jf0502698
Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., Aruoma, O.I.: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology 278(1), 75–87 (2010). https://doi.org/10.1016/j.tox.2010.01.012
AOAC: Official Methods of Analysis. Agricultural Chemicals; Contaminants; Drugs, 15th edn. Association of Official Chemists, Arlington (1990)
Barros, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.F.R.: Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chem. 120, 247–254 (2010)
Kosmala, M., Milala, J., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., Renard, C.M.: Characterization of cell wall polysaccharides of cherry (Prunus cerasus var. Schattenmorelle) fruit and pomace. Plant Food Hum. Nutr. 64(4), 279–285 (2009). https://doi.org/10.1007/s11130-009-0134-z
Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., Larondelle, Y.: Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Pur. Technol. 55(2), 217–225 (2007). https://doi.org/10.1016/j.seppur.2006.12.005
Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci. Technol. 44(2), 436–442 (2011). https://doi.org/10.1016/j.lwt.2010.08.006
Rødtjer, A., Skibsted, L.H., Andersen, M.L.: Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chem. 99(1), 6–14 (2006). https://doi.org/10.1016/j.foodchem.2005.07.011
Patras, A., Brunton, N.P., O’Donnell, C., Tiwari, B.K.: Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 21(1), 3–11 (2010). https://doi.org/10.1016/j.tifs.2009.07.004
Kulisic-Bilusic, T., Schnäbele, K., Schmöller, I., Dragovic-Uzelac, V., Krisko, A., Dejanovic, B., Pifat, G.: Antioxidant activity versus cytotoxic and nuclear factor kappa B regulatory activities on HT-29 cells by natural fruit juices. Eur. Food Res. Technol. 228(3), 417–424 (2009). https://doi.org/10.1007/s00217-008-0948-1
Liu, Y., Liu, X., Zhong, F., Tian, R., Zhang, K., Zhang, X., Li, T.: Comparative study of phenolic compounds and antioxidant activity in different species of cherries. J. Food Sci. 76(4), C633–C638 (2011)
Simsek, M., Sumnu, G., Sahin, S.: Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012). https://doi.org/10.1080/01496395.2011.644616
González-Gómez, D., Lozano, M., Fernández-León, M.F., Bernalte, M.J., Ayuso, M.C., Rodríguez, A.B.: Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 23(6), 533–539 (2010). https://doi.org/10.1016/j.jfca.2009.02.008
Hassimotto, N.M.A., Genovese, M.I., Lajolo, F.M.: Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53(8), 2928–2935 (2005). https://doi.org/10.1021/jf047894h
Cacace, J.E., Mazza, G.: Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59(4), 379–389 (2003). https://doi.org/10.1016/S0260-8774(02)00497-1
Wang, H., Nair, M.G., Strasburg, G.M., Booren, A.M., Gray, J.I.: Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem. 47(3), 840–844 (1999). https://doi.org/10.1021/jf980936f
Nassi o Di Nasso, N., Angelini, L.G., Bonari, E.: Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy. Eur. J. Agron. 32, 219–227 (2010). https://doi.org/10.1016/j.eja.2009.12.001
Lammens, T.M., Vis, M., de Groot, H., Vanmeulebrouk, V., Staritsky, I., Elbersen, B., Annevelink, E., Elbersen, W., Alakangas, E., van den Berg, D.: Bio2match: a tool for optimizing the match between lignocellulosic biomass and conversion technologies. In: Faaij, A.P.C., Baxter, D., Grassi, A., Helm, P. (eds.), Proceedings of the 24th European Biomass Conference and Exhibition, pp. 1381–1386. ETA-Florence Renewable Energies (2016)
Fernando, A.L., Costa, J., Barbosa, B., Monti, A., Rettenmaier, N.: Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy. (2017). https://doi.org/10.1016/j.biombioe.2017.04.005
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Muchagato Maurício, E., Rosado, C., Duarte, M.P. et al. Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy. Waste Biomass Valor 11, 201–210 (2020). https://doi.org/10.1007/s12649-018-0395-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-018-0395-6

