Skip to main content

Advertisement

Log in

Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

There has been a growing interest in the recovery and valorization of chemical products from biomass wastes. In the present study pomace from sour cherry liquor was analyzed in order to evaluate its potential for valorization. Two different samples of liquor pomace and two different extraction methods were screened through determination of their phenolic content (HPLC/PDA) and antioxidant activity (FRAP and DPPH assay). Results obtained showed that skins (pomace without kernel) presented a higher extraction yield, polyphenolic content and antioxidant activity than pomace with kernel (skin+kernel). Decoction at 100 °C allowed a higher recovery of phenolic compounds, but, maceration with water at 25 °C was considered a more sustainable process. HPLC analyses allowed the identification and quantification of phenolic compounds such as cyanidin-3-O-glucoside, (+)catechin and (−)epicatechin and some phenolic acids. The analyzed by-products might be a promising source of natural polyphenolic compounds, which can act as a new eco-friendly antioxidant ingredient, with potential to be incorporated in nutraceutical formulations or applied in food or cosmetic industries. The residues remaining after extraction have a high calorific value and fat content, suggesting its valorization as a source of energy or through the extraction of value-added oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. European Environment Agency: Food security and environmental impacts. EEA. http://www.eea.europa.eu/themes/agriculture/greening-agricultural-policy/food-security-and-environmental-impacts (2014). Accessed 24 Feb 2017

  2. Yılmaz, F.M., Karaaslan, M., Vardin, H.: Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 52(5), 2851–2859 (2015). https://doi.org/10.1007/s13197-014-1345-3

    Article  Google Scholar 

  3. European Environment Agency: Circular economy in Europe. Developing the knowledge base. https://www.eea.europa.eu/publications/circular-economy-in-europe (2016). Accessed 20 July 2017

  4. Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean. Prod. 114, 11–32 (2016)

    Article  Google Scholar 

  5. Sauvé, S., Bernard, S., Sloan, P.: Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research. Environ. Dev. 17, 48–56 (2016)

    Article  Google Scholar 

  6. Bonilla, F., Mayen, M., Merida, J., Medina, M.: Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66(2), 209–215 (1999). https://doi.org/10.1016/S0308-8146(99)00046-1

    Article  Google Scholar 

  7. Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L., Haroutounian, S.A.: Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 43(3), 805–813 (2010). https://doi.org/10.1016/j.foodres.2009.11.017

    Article  Google Scholar 

  8. Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46(2), 505–513 (2012). https://doi.org/10.1016/j.foodres.2011.09.027

    Article  Google Scholar 

  9. Kumcuoglu, S., Yilmaz, T., Tavman, S.: Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51(12), 4102–4107 (2014). https://doi.org/10.1007/s13197-013-0926-x

    Article  Google Scholar 

  10. Boonchu, T., Utama-ang, N.: Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. J Food Sci. Technol. 52(2), 783–792 (2013). https://doi.org/10.1007/s13197-013-1079-7

    Article  Google Scholar 

  11. Wang, R., Lechtenberg, M., Sendker, J., Petereit, F., Deters, A., Hensel, A.: Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes. Fitoterapia 84, 308–317 (2013). https://doi.org/10.1016/j.fitote.2012.12.020

    Article  Google Scholar 

  12. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.C., Lorquin, J., Delattre, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75(4), 501–507 (2001). https://doi.org/10.1016/S0308-8146(01)00227-8

    Article  Google Scholar 

  13. Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lesage-Meessen, L.: Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem. 40(5), 1855–1862 (2005). https://doi.org/10.1016/j.procbio.2004.06.054

    Article  Google Scholar 

  14. De Marco, E., Savarese, M., Paduano, A., Sacchi, R.: Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104(2), 858–867 (2007). https://doi.org/10.1016/j.foodchem.2006.10.005

    Article  Google Scholar 

  15. Bouaziz, M., Lassoued, S., Bouallagui, Z., Smaoui, S., Gargoubi, A., Dhouib, A., Sayadi, S.: Synthesis and recovery of high bioactive phenolics from table-olive brine process wastewater. Bioorg. Med. Chem. 16(20), 9238–9246 (2008). https://doi.org/10.1016/j.bmc.2008.09.012

    Article  Google Scholar 

  16. Sudjana, A.N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Hammer, K.A.: Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 33(5), 461–463 (2009). https://doi.org/10.1016/j.ijantimicag.2008.10.026

    Article  Google Scholar 

  17. Ignat, I., Volf, I., Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4), 1821–1835 (2011). https://doi.org/10.1016/j.foodchem.2010.12.026

    Article  Google Scholar 

  18. Moure, A., Cruz, J.M., Franco, D., Domínguez, J.M., Sineiro, J., Domínguez, H., Parajó, J.C.: Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001). https://doi.org/10.1016/S0308-8146(00)00223-5

    Article  Google Scholar 

  19. Kumar, P.S., Kumar, N.A., Sivakumar, R., Kaushik, C.: Experimentation on solvent extraction of polyphenols from natural waste. J. Mater. Sci. 44(21), 5894–5899 (2009). https://doi.org/10.1007/s10853-009-3834-8

    Article  Google Scholar 

  20. Wijngaard, H.H., Rößle, C., Brunton, N.: A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116(1), 202–207 (2009). https://doi.org/10.1016/j.foodchem.2009.02.033

    Article  Google Scholar 

  21. Laroze, L.E., Díaz-Reinoso, B., Moure, A., Zúñiga, M.E., Domínguez, H.: Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 231(5), 669–677 (2010). https://doi.org/10.1007/s00217-010-1320-9

    Article  Google Scholar 

  22. Bocco, A., Cuvelier, M.E., Richard, H., Berset, C.: Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 46(6), 2123–2129 (1998). https://doi.org/10.1021/jf9709562

    Article  Google Scholar 

  23. Schieber, A., Hilt, P., Streker, P., Endreß, H.U., Rentschler, C., Carle, R.: A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4(1), 99–107 (2003). https://doi.org/10.1016/S1466-8564(02)00087-5

    Article  Google Scholar 

  24. Wolfe, K.L., Liu, R.H.: Apple peels as a value-added food ingredient. J. Agric. Food Chem. 51(6), 1676–1683 (2003). https://doi.org/10.1021/jf025916z

    Article  Google Scholar 

  25. Chaovanalikit, A., Wrolstad, R.E.: Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci. 69(1), FCT67–FCT72 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb17858

    Article  Google Scholar 

  26. Fan, G., Han, Y., Gu, Z., Chen, D.: Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT-Food Sci. Technol. 41(1), 155–160 (2008). https://doi.org/10.1016/j.lwt.2007.01.019

    Article  Google Scholar 

  27. Frutóbidos: Personal communication, Óbidos, Portugal (2013)

  28. Larrosa, M., Llorach, R., Espín, J.C., Tomás-Barberán, F.A.: Increase of antioxidant activity of tomato juice upon functionalisation with vegetable byproduct extracts. LWT-Food Sci. Technol. 35(6), 532–542 (2002). https://doi.org/10.1006/fstl.2002.0907

    Article  Google Scholar 

  29. Lapornik, B., Prošek, M., Golc Wondra, A.: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2), 214–222 (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.036

    Article  Google Scholar 

  30. McCune, L.M., Kubota, C., Stendell-Hollis, N.R., Thomson, C.A.: Cherries and health: a review. Crit. Rev. Food Sci. Nutr. 51(1), 1–12 (2010). https://doi.org/10.1111/j.1750-3841.2011.02150.x

    Article  Google Scholar 

  31. Maurício, E., Rosado, C., Duarte, M.P., Lanza, A.M.D.: Application of Óbidos “Ginjinha” by-products in topical formulations: a preliminary study. Biomed. Biopharm. Res. 1(10), 83–90 (2013)

    Google Scholar 

  32. Wojdyło, A., Nowicka, P., Laskowski, P., Oszmiański, J.: Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J. Agric. Food Chem. 62(51), 12332–12345 (2014). https://doi.org/10.1021/jf504023z

    Article  Google Scholar 

  33. Tsanova-Savova, S., Ribarova, F., Gerova, M.: (+)-Catechin and (−)epicatechin in Bulgarian fruits. J. Food Compos. Anal. 18(7), 691–698 (2005). https://doi.org/10.1016/j.jfca.2004.06.008

    Article  Google Scholar 

  34. Piccolella, S., Fiorentino, A., Pacifico, S., D’Abrosca, B., Uzzo, P., Monaco, P.: Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanolic extract of ripe fruits. J. Agric. Food Chem. 56(6), 1928–1935 (2008). https://doi.org/10.1021/jf0734727

    Article  Google Scholar 

  35. Galluzzo, P., Martini, C., Bulzomi, P., Leone, S., Bolli, A., Pallottini, V., Marino, M.: Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol. Nutr. Food Res. 53(6), 699–708 (2009). https://doi.org/10.1002/mnfr.200800239

    Article  Google Scholar 

  36. Serra, A.T., Duarte, R.O., Bronze, M.R., Duarte, C.M.: Identification of bioactive response in traditional cherries from Portugal. Food Chem. 125(2), 318–325 (2011). https://doi.org/10.1016/j.foodchem.2010.07.088

    Article  Google Scholar 

  37. Ferretti, G., Bacchetti, T., Belleggia, A., Neri, D.: Cherry antioxidants: from farm to table. Molecules 15(10), 6993–7005 (2010). https://doi.org/10.3390/molecules15106993

    Article  Google Scholar 

  38. Seeram, N.P., Momin, R.A., Nair, M.G., Bourquin, L.D.: Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8(5), 362–369 (2001). https://doi.org/10.1078/0944-7113-00053

    Article  Google Scholar 

  39. Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R.: Analysis and biological activities of anthocyanins. Phytochemistry 64(5), 923–933 (2003). https://doi.org/10.1016/S0031-9422(03)00438-2

    Article  Google Scholar 

  40. Blando, F., Gerardi, C., Nicoletti, I.: Sour cherry (Prunus cerasus L.) anthocyanins as ingredients for functional foods. BioMed Res. Int. 2004(5), 253–258 (2004). https://doi.org/10.1155/S1110724304404136

    Article  Google Scholar 

  41. Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J.A., Bagchi, D.: Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51(6), 675–683 (2007). https://doi.org/10.1002/mnfr.200700002

    Article  Google Scholar 

  42. Siddiq, M., Iezzoni, A., Khan, A., Breen, P., Sebolt, A.M., Dolan, K.D., Ravi, R.: Characterization of new tart cherry (Prunus cerasus L.): selections based on fruit quality, total anthocyanins, and antioxidant capacity. Int. J. Food Prop. 14(2), 471–480 (2011). https://doi.org/10.1080/10942910903277697

    Article  Google Scholar 

  43. Mulabagal, V., Lang, G.A., DeWitt, D.L., Dalavoy, S.S., Nair, M.G.: Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57(4), 1239–1246 (2009). https://doi.org/10.1021/jf8032039

    Article  Google Scholar 

  44. Seymour, E.M., Lewis, S.K., Urcuyo-Llanes, D.E., Tanone, I.I., Kirakosyan, A., Kaufman, P.B., Bolling, S.F.: Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J. Med. Food. 12(5), 935–942 (2009). https://doi.org/10.1089/jmf.2008.0270

    Article  Google Scholar 

  45. Liu, Q., Cai, W., Shao, X.: Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta 77(2), 679–683 (2008). https://doi.org/10.1016/j.talanta.2008.07.011

    Article  Google Scholar 

  46. Nowicka, P., Wojdyło, A., Lech, K., Figiel, A.: Chemical composition, antioxidant capacity, and sensory quality of dried sour cherry fruits pre-dehydrated in fruit concentrates. Food Bioprocess Technol. 8(10), 2076–2095 (2015). https://doi.org/10.1007/s11947-015-1561-5

    Article  Google Scholar 

  47. Kim, D.O., Heo, H.J., Kim, Y.J., Yang, H.S., Lee, C.Y.: Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 53(26), 9921–9927 (2005). https://doi.org/10.1021/jf0518599

    Article  Google Scholar 

  48. Bak, I., Lekli, I., Juhasz, B., Nagy, N., Varga, E., Varadi, J., Tosaki, A.: Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1329–H1336 (2006). https://doi.org/10.1152/ajpheart.01243.2005

    Article  Google Scholar 

  49. Koşar, M., Göger, F., Can Başer, K.H.: In vitro antioxidant properties and phenolic composition of Salvia virgata Jacq. from Turkey. J. Agric. Food Chem. 56(7), 2369–2374 (2008). https://doi.org/10.1021/jf073516b

    Article  Google Scholar 

  50. Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10), 4290–4302 (2005). https://doi.org/10.1021/jf0502698

    Article  Google Scholar 

  51. Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., Aruoma, O.I.: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology 278(1), 75–87 (2010). https://doi.org/10.1016/j.tox.2010.01.012

    Article  Google Scholar 

  52. AOAC: Official Methods of Analysis. Agricultural Chemicals; Contaminants; Drugs, 15th edn. Association of Official Chemists, Arlington (1990)

    Google Scholar 

  53. Barros, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.F.R.: Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chem. 120, 247–254 (2010)

    Article  Google Scholar 

  54. Kosmala, M., Milala, J., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., Renard, C.M.: Characterization of cell wall polysaccharides of cherry (Prunus cerasus var. Schattenmorelle) fruit and pomace. Plant Food Hum. Nutr. 64(4), 279–285 (2009). https://doi.org/10.1007/s11130-009-0134-z

    Article  Google Scholar 

  55. Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., Larondelle, Y.: Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Pur. Technol. 55(2), 217–225 (2007). https://doi.org/10.1016/j.seppur.2006.12.005

    Article  Google Scholar 

  56. Conde, E., Moure, A., Domínguez, H., Parajó, J.C.: Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci. Technol. 44(2), 436–442 (2011). https://doi.org/10.1016/j.lwt.2010.08.006

    Article  Google Scholar 

  57. Rødtjer, A., Skibsted, L.H., Andersen, M.L.: Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chem. 99(1), 6–14 (2006). https://doi.org/10.1016/j.foodchem.2005.07.011

    Article  Google Scholar 

  58. Patras, A., Brunton, N.P., O’Donnell, C., Tiwari, B.K.: Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 21(1), 3–11 (2010). https://doi.org/10.1016/j.tifs.2009.07.004

    Article  Google Scholar 

  59. Kulisic-Bilusic, T., Schnäbele, K., Schmöller, I., Dragovic-Uzelac, V., Krisko, A., Dejanovic, B., Pifat, G.: Antioxidant activity versus cytotoxic and nuclear factor kappa B regulatory activities on HT-29 cells by natural fruit juices. Eur. Food Res. Technol. 228(3), 417–424 (2009). https://doi.org/10.1007/s00217-008-0948-1

    Article  Google Scholar 

  60. Liu, Y., Liu, X., Zhong, F., Tian, R., Zhang, K., Zhang, X., Li, T.: Comparative study of phenolic compounds and antioxidant activity in different species of cherries. J. Food Sci. 76(4), C633–C638 (2011)

    Article  Google Scholar 

  61. Simsek, M., Sumnu, G., Sahin, S.: Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012). https://doi.org/10.1080/01496395.2011.644616

    Article  Google Scholar 

  62. González-Gómez, D., Lozano, M., Fernández-León, M.F., Bernalte, M.J., Ayuso, M.C., Rodríguez, A.B.: Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 23(6), 533–539 (2010). https://doi.org/10.1016/j.jfca.2009.02.008

    Article  Google Scholar 

  63. Hassimotto, N.M.A., Genovese, M.I., Lajolo, F.M.: Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53(8), 2928–2935 (2005). https://doi.org/10.1021/jf047894h

    Article  Google Scholar 

  64. Cacace, J.E., Mazza, G.: Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59(4), 379–389 (2003). https://doi.org/10.1016/S0260-8774(02)00497-1

    Article  Google Scholar 

  65. Wang, H., Nair, M.G., Strasburg, G.M., Booren, A.M., Gray, J.I.: Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem. 47(3), 840–844 (1999). https://doi.org/10.1021/jf980936f

    Article  Google Scholar 

  66. Nassi o Di Nasso, N., Angelini, L.G., Bonari, E.: Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy. Eur. J. Agron. 32, 219–227 (2010). https://doi.org/10.1016/j.eja.2009.12.001

    Article  Google Scholar 

  67. Lammens, T.M., Vis, M., de Groot, H., Vanmeulebrouk, V., Staritsky, I., Elbersen, B., Annevelink, E., Elbersen, W., Alakangas, E., van den Berg, D.: Bio2match: a tool for optimizing the match between lignocellulosic biomass and conversion technologies. In: Faaij, A.P.C., Baxter, D., Grassi, A., Helm, P. (eds.), Proceedings of the 24th European Biomass Conference and Exhibition, pp. 1381–1386. ETA-Florence Renewable Energies (2016)

  68. Fernando, A.L., Costa, J., Barbosa, B., Monti, A., Rettenmaier, N.: Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy. (2017). https://doi.org/10.1016/j.biombioe.2017.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabete Muchagato Maurício or Ana Luísa Fernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchagato Maurício, E., Rosado, C., Duarte, M.P. et al. Evaluation of Industrial Sour Cherry Liquor Wastes as an Ecofriendly Source of Added Value Chemical Compounds and Energy. Waste Biomass Valor 11, 201–210 (2020). https://doi.org/10.1007/s12649-018-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0395-6

Keywords