Advertisement

Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes

  • Romina A. Arreche
  • Gabriela Montes de Oca-Vásquez
  • Jose R. Vega-Baudrit
  • Patricia G. Vázquez
Original Paper
  • 64 Downloads

Abstract

Synthesis of metallic nanoparticles by an eco-friendly and sustainable process is an important target to be developed in nanotechnology area. In the present work, two different commercial brands of yerba mate from Argentina and their wastes (PYM and TYM samples) were used for the preparation of aqueous extracts, in order to synthesize silver nanoparticles at room temperature (25 °C). The silver nanoparticles obtained were spherical, hexagonal and, triangular in shape with the average particle size of 50 nm and, shows a surface plasmon peak around 460 nm. The antimicrobial activity of the silver nanoparticles obtained with the extracts from yerba mate wastes was evaluated against E. coli and S. aureus. The minimum inhibitory concentrations required for E. coli were 7.66 and 17.66 µg ml−1 using the treatment T2YE and P2YE, respectively and, for S. aureus were 23.25 and 50.60 µg ml−1 for the treatment T2YE and P2YE, respectively. The study suggests that polyphenols present in I. paraguariensis leaf extract act as reducing agent and stabilizer of the nanoparticles.

Graphical Abstract

Keywords

Yerba mate Wastes Silver nanoparticles Eco-friendly synthesis Transmission electronic microscopy Antibacterial activity 

Notes

Acknowledgements

The authors would like to express their thanks for the financial support provided by Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CeNAT-CONARE), POLIUNA-UNIVERSIDAD NACIONAL de Costa Rica, National Scientific and Technical Research Council (CONICET) and National University of La Plata (UNLP). They also thank to Reynaldo Pereira for TEM micrographs, Universidad Nacional for the Dynamic light scattering (DLS) and Zeta potential analysis, and Yendry Corrales Ureña for AFM images.

References

  1. 1.
    Grigioni, G., Carduza, F., Irurueta, M., Pensel, N.: Flavour characteristics of Ilex paraguariensis infusion, a typical Argentine product, assessed by sensory evaluation and electronic nose. J. Sci. Food Agric. 84, 427–432 (2004).  https://doi.org/10.1002/jsfa.1670 CrossRefGoogle Scholar
  2. 2.
    Bracesco, N., Sanchez, A.G., Contreras, V., Menini, T., Gugliucci, A.: Recent advances on Ilex paraguariensis research: minireview. J. Ethnopharmacol. 136, 378–384 (2011).  https://doi.org/10.1016/j.jep.2010.06.032 CrossRefGoogle Scholar
  3. 3.
    Heck, C.I., De Mejia, E.G.: Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. (2007).  https://doi.org/10.1111/j.1750-3841.2007.00535.x Google Scholar
  4. 4.
    Filip, R., Sebastian, T., Ferraro, G., Anesini, C.: Effect of Ilex extracts and isolated compounds on peroxidase secretion of rat submandibulary glands. Food Chem. Toxicol. 45, 649–655 (2007).  https://doi.org/10.1016/j.fct.2006.10.014 CrossRefGoogle Scholar
  5. 5.
    Conforti, A.S., Gallo, M.E., Saraví, F.D.: Yerba mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women. Bone. 50, 9–13 (2012).  https://doi.org/10.1016/j.bone.2011.08.029 CrossRefGoogle Scholar
  6. 6.
    Instituto Nacional de la Yerba Mate, Instituto Nacional de la Yerba Mate (2016). http://yerbamateargentina.org.ar/.
  7. 7.
    Burris, K.P., Harte, F.M., Davidson, P.M., Neal Stewart, C. Jr., Zivanovic, S.: Composition and bioactive properties of yerba mate (Ilex paraguariensis A. St.-Hil.): a review. Chil. J. Agric. Res. 72, 268–275 (2012).  https://doi.org/10.4067/S0718-58392012000200016 CrossRefGoogle Scholar
  8. 8.
    Filip, R., López, P., Giberti, G., Coussio, J., Ferraro, G.: Phenolic compounds in seven South American Ilex species. Fitoterapia. 72, 774–778 (2001).  https://doi.org/10.1016/S0367-326X(01)00331-8 CrossRefGoogle Scholar
  9. 9.
    Bragança, V.L.C., Melnikov, P., Zanoni, L.Z.: Trace elements in different brands of yerba mate tea. Biol. Trace Elem. Res. 144, 1197–1204 (2011).  https://doi.org/10.1007/s12011-011-9056-3 CrossRefGoogle Scholar
  10. 10.
    Niraimathi, K.L., Sudha, V., Lavanya, R., Brindha, P.: Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B 102, 288–291 (2013).  https://doi.org/10.1016/j.colsurfb.2012.08.041 CrossRefGoogle Scholar
  11. 11.
    Bindhu, M.R., Umadevi, M.: Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A 101, 184–190 (2013).  https://doi.org/10.1016/j.saa.2012.09.031 CrossRefGoogle Scholar
  12. 12.
    Mittal, A.K., Chisti, Y., Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013).  https://doi.org/10.1016/j.biotechadv.2013.01.003 CrossRefGoogle Scholar
  13. 13.
    Hebbalalu, D., Lalley, J., Nadagouda, M.N., Varma, R.S.: Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 1, 703–712 (2013).  https://doi.org/10.1021/sc4000362 CrossRefGoogle Scholar
  14. 14.
    Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Pérez, B.O., Pérez, V.M.J.: The greener synthesis of nanoparticles. Trends Biotechnol. 31, 240–248 (2013).  https://doi.org/10.1016/j.tibtech.2013.01.003 CrossRefGoogle Scholar
  15. 15.
    Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016).  https://doi.org/10.1016/j.jare.2015.02.007 CrossRefGoogle Scholar
  16. 16.
    Patel, A.C., Li, S., Wang, C., Zhang, W., Wei, Y.: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231–1238 (2007).  https://doi.org/10.1021/cm061331z CrossRefGoogle Scholar
  17. 17.
    Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A.: Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010).  https://doi.org/10.1016/j.arabjc.2010.04.008 CrossRefGoogle Scholar
  18. 18.
    Rauwel, E., Simón-Gracia, L., Guha, M., Rauwel, P., Kuunal, S., Wragg, D.: Silver metal nanoparticles study for biomedical and green house applications. IOP Conf. Ser. Mater. Sci. Eng. 175, 11001 (2016).  https://doi.org/10.1088/1742-6596/755/1/011001 Google Scholar
  19. 19.
    Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007).  https://doi.org/10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  20. 20.
    Chou, W.-L., Yu, D.-G., Yang, M.-C.: The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym. Adv. Technol. 16, 600–607 (2005).  https://doi.org/10.1002/pat.630 CrossRefGoogle Scholar
  21. 21.
    Windler, L., Height, M., Nowack, B.: Comparative evaluation of antimicrobials for textile applications. Environ. Int. 53, 62–73 (2013).  https://doi.org/10.1016/j.envint.2012.12.010 CrossRefGoogle Scholar
  22. 22.
    Arreche, R., Bellotti, N., Deyá, C., Vázquez, P.: Assessment of waterborne coatings formulated with sol-gel/Ag related to fungal growth resistance. Prog. Org. Coat. 108, 36–43 (2017).  https://doi.org/10.1016/j.porgcoat.2017.04.007 CrossRefGoogle Scholar
  23. 23.
    Panacek, A., Kvıtek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R., Kvı, L., Vec, R.: Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253 (2006).  https://doi.org/10.1021/jp063826h CrossRefGoogle Scholar
  24. 24.
    Alvarado, R., Solera, F., Vega-Baudrit, J.: Síntesis Sonoquímica de nanopartículas de óxido de cinc y de plata estabilizadas con quitosano. Evaluación de su actividad antimicrobiana. Revista Iberoamericana 15, 134–148 (2014)Google Scholar
  25. 25.
    Brause, R., Möltgen, H., Kleinermanns, K.: Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B 75, 711–716 (2002).  https://doi.org/10.1007/s00340-002-1024-3 CrossRefGoogle Scholar
  26. 26.
    Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996).  https://doi.org/10.1021/la9502711 CrossRefGoogle Scholar
  27. 27.
    Sosa, I.O., Noguez, C., Barrera, R.G.: Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269–6275 (2003).  https://doi.org/10.1021/jp0274076 CrossRefGoogle Scholar
  28. 28.
    Zhao, Y., Jiang, Y., Fang, Y.: Spectroscopy property of Ag nanoparticles. Spectrochim. Acta A 65, 1003–1006 (2006).  https://doi.org/10.1016/j.saa.2006.01.010 CrossRefGoogle Scholar
  29. 29.
    El Badawy, A.M., Luxton, T.P., Silva, R.G., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M.: Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44, 1260–1266 (2010).  https://doi.org/10.1021/es902240k CrossRefGoogle Scholar
  30. 30.
    Cosgrove, T.: Colloid Science: Principles, Methods and Applications. Wiley, New York (2005).  https://doi.org/10.1097/00000433-198206000-00020 CrossRefGoogle Scholar
  31. 31.
    El-Zahry, M.R., Mahmoud, A., Refaat, I.H., Mohamed, H.A., Bohlmann, H., Lendl, B.: Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta. 138, 183–189 (2015).  https://doi.org/10.1016/j.talanta.2015.02.022 CrossRefGoogle Scholar
  32. 32.
    Bastos, D.H.M., Ishimoto, E.Y., Ortiz, M., Marques, M., Fernando Ferri, A., Torres, E.A.F.S.: Essential oil and antioxidant activity of green mate and mate tea (Ilex paraguariensis) infusions. J. Food Compos. Anal. 19, 538–543 (2006).  https://doi.org/10.1016/j.jfca.2005.03.002 CrossRefGoogle Scholar
  33. 33.
    Berte, K.A., Beux, M.R., Spada, P.K., Salvador, M., Hoffmann-Ribani, R.: Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agric. Food Chem. 59, 5523–5527 (2011).  https://doi.org/10.1021/jf2008343 CrossRefGoogle Scholar
  34. 34.
    Bastos, D.H.M., Saldanha, L.A., Catharino, R.R., Sawaya, A.C.H.F., Cunha, I.B.S., Carvalho, P.O., Eberlin, M.N.: Phenolic antioxidants identified by ESI-MS from yerba mate (Ilex paraguariensis) and green tea (Camellia sinensis) extracts. Molecules 12, 423–432 (2007)CrossRefGoogle Scholar
  35. 35.
    Isolabella, S., Cogoi, L., López, P., Anesini, C., Ferraro, G., Filip, R.: Study of the bioactive compounds variation during yerba mate (Ilex paraguariensis) processing. Food Chem. 122, 695–699 (2010).  https://doi.org/10.1016/j.foodchem.2010.03.039 CrossRefGoogle Scholar
  36. 36.
    Anbinder, P.S., Deladino, L., Navarro, A.S., Amalvy, J.I., Martino, M.N.: Yerba mate extract encapsulation with alginate and chitosan systems: interactions between active compound encapsulation polymers. J Encapsul. Adsorpt. Sci. 2011, 80–87 (2011).  https://doi.org/10.4236/jeas.2011.14011 CrossRefGoogle Scholar
  37. 37.
    Taylor, P., Marcelo, M.C.A., Pozebon, D., Ferrão, M.F.: Authentication of yerba mate according to the country of origin by using Fourier transform infrared (FTIR) associated with chemometrics. Food Addit. Contam. A (2015).  https://doi.org/10.1080/19440049.2015.1050702 Google Scholar
  38. 38.
    Shamaila, S., Sajjad, A.K.L., Ryma, N.A., Farooqi, S.A., Jabeen, N., Majeed, S., Farooq, I.: Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150–199 (2016).  https://doi.org/10.1016/j.apmt.2016.09.009 CrossRefGoogle Scholar
  39. 39.
    Castro, L., Blazquez, M.L., Munoz, J.A., Gonzalez, F., Garcıa-Balboa, C., Ballester, A.: Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 46, 1076–1082 (2011).  https://doi.org/10.1016/j.procbio.2011.01.025 CrossRefGoogle Scholar
  40. 40.
    Buszewski, B., Railean-plugaru, V., Szultka-mlynska, M., Golinska, P.: Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect. (2016).  https://doi.org/10.1016/j.jmii.2016.03.002 Google Scholar
  41. 41.
    Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., Sreedhar, B.: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C (2015).  https://doi.org/10.1016/j.msec.2015.08.018 Google Scholar
  42. 42.
    Rasulov, B., Rustamova, N., Yili, A., Zhao, H.: Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiol. 61, 283–293 (2015).  https://doi.org/10.1007/s12223-015-0436-5 CrossRefGoogle Scholar
  43. 43.
    Agnihotri, S., Mukherji, S., Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014).  https://doi.org/10.1039/c3ra44507k CrossRefGoogle Scholar
  44. 44.
    Ibrahim, H.M.M.: Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265–275 (2015).  https://doi.org/10.1016/j.jrras.2015.01.007 CrossRefGoogle Scholar
  45. 45.
    Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., Mohan, N.: Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 76, 50–56 (2010).  https://doi.org/10.1016/j.colsurfb.2009.10.008 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CINDECA – Centro de Investigación y Desarrollo en Ciencias Aplicadas, ¨Dr. Jorge J. Ronco¨, CONICET – CIC – UNLPLa PlataArgentina
  2. 2.LANOTEC – National Laboratory of Nanotechnology, Centro Nacional de Alta Tecnología (CeNAT – CONARE)San JoseCosta Rica

Personalised recommendations