Effects of Organic Matter on Physical Properties of Dredged Marine Sediments

  • Fawzi Hamouche
  • Rachid ZentarEmail author
Original Paper


Dredged sediment, listed as waste according to European classification, is available in significant quantities. With the announced shortage of standard materials to supply civil engineering sector (specifically road construction domain), the beneficial use of these wastes could lead to better management of waste and optimize the use of standard materials. Dredged sediments consist of a mineral phase, an organic phase (in various forms) and a liquid phase (generally water). However, the presence of organic matter (OM) in sediment, even in small amounts, can affect its physical properties. The main objective of this study is to investigate the effects of the OM content on physical properties of dredged sediments. The physical parameters studied are considered as a key parameter in the field of road construction. To undertake this study, a specific procedure for samples preparation was developed. This procedure allows undertaking tests on samples ranging from 2.5 to 15% in terms of organic matter content. The results on the prospected properties show that the material classification in the field of road construction is almost unaffected.


Organic matter Dredged sediments Valorization Physical properties 



The authors are grateful to Les Hauts-de-France region for their financial support to the action 3: impacts of organic matter in the framework of industrial chair ECOSED.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Grandchamp, F., Sutton, G., Harrington, J., Belhadj, E., Mcheik, A., Masson, E., Lemière, B., Brakni, S.: CEAMaS project. Civil Engineering Applications for Marine Sediments. 4th International Symposium on Sediment Management (I2SM), Ferrara, Italy (2014)Google Scholar
  2. 2.
    El Fadili, M., Messager, M.: Enquête Dragage 2011, Synthèse Des Données. CEREMA Edition, pp. 1–39 (2015)Google Scholar
  3. 3.
    Fourcher, J.: Valorisation Des Déblais Sableux de Dragage Portuaire En France Métropolitaine. Final year project. ENTPE. 1–66 (2005)Google Scholar
  4. 4.
    Zentar, R., Abriak, N.-E., Dubois, V.: Effects of salts and organic matter on atterberg limits of dredged marine sediments. Appl. Clay Sci. 42, 391–397 (2009)CrossRefGoogle Scholar
  5. 5.
    Zentar, R., Wang, D., Abriak, N.-E., Benzerzour, M., Chen, W.: Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments. Constr. Build. Mater. 35, 856–863 (2012)CrossRefGoogle Scholar
  6. 6.
    Said, I., Missaoui, A., Lafhaj, Z.: Reuse of Tunisian marine sediments in paving blocks: factory scale experiment. J. Clean. Prod. 102, 66–77 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, D., Zentar, R., et Abriak, N.-E.: Interpretation of compression behavior of structured and remolded marine soils. J. Mater. Civ. Eng. 28(6): 04016005 (2016). CrossRefGoogle Scholar
  8. 8.
    Wang, L., Yeung, T.L.K., Lau, A.Y.T., Tsang, D.C.W., Poon, C.-S.: Recycling contaminated sediment into eco-friendly blocks by a combination of binary cement and carbon dioxide curing. J. Clean. Prod. 164, 1279–1288 (2017)CrossRefGoogle Scholar
  9. 9.
    Wang, D., Zentar, R., et Abriak, N.-E.: Temperature-accelerated strength development in stabilized marine soils as road construction materials. J. Mater. Civ. Eng. 29(5), 04016281 (2017). CrossRefGoogle Scholar
  10. 10.
    Wang, D., Zentar, R., et Abriak, N.-E.: Durability and swelling of solidified/stabilized dredged marine soils with Class-F Fly ash, cement, and lime. J. Mater. Civ. Eng. 30(3), 04018013 (2018). CrossRefGoogle Scholar
  11. 11.
    Mymrin, V., Stella, J.C., Scremim, C.B., Roberto, C.Y., Pan, R.C.Y., Sanches, F.G., Alekssev, K., Pedroso, D.E., Molinetti, A., Fortini, O.M.: Utilization of sediment dredged from marine ports as principal component of composite material. J. Clean. Prod. 142, 4041–4049 (2017)CrossRefGoogle Scholar
  12. 12.
    UNPG: Carrières & Granulats à l’horizon 2030. Edition UNPG (2011)Google Scholar
  13. 13.
    Casagrande, A.: Classification and identification of soils. Trans. ASCE 113, 901–991 (1948)Google Scholar
  14. 14.
    Pusch, R., Influence of organic matter on the geotechnical properties of clays. In the synopsis and summaries from National Swedish Building Research reports, Stockholm, Sweden (1973)Google Scholar
  15. 15.
    Rashid, M.A., Brown, J.D.: Influence of marine organic compounds on the engineering properties of a remolded sediment. Eng. Geol. 9, 141–154 (1975)CrossRefGoogle Scholar
  16. 16.
    Bennett, R.H., Bryant, W.R., Keller, G.H.: Clay Fabric and Geotechnical Properties of Selected Submarine Sediment Cores from the Mississippi Delta. NOAA. Professional paper No. 9. US. Department of commerce/NOAA/ERL (1977)Google Scholar
  17. 17.
    Bennett, R.H., Linda Lehman, L., Hulbert, M.H., Harvey, G.R., Bush, S.A., Forde, E.B., Crews, P., Sawyer, W.B.: Interrelationships of organic carbon and submarine sediment geotechnical properties. Mar. Geotechnol. 6, 61–98 (1985)CrossRefGoogle Scholar
  18. 18.
    Keller, G.: Organic matter and the geotechnical properties of submarine sediments. Geo-Mar. Lett. 2, 191–198 (1982)CrossRefGoogle Scholar
  19. 19.
    Smith, C.W., Hadas, A., Dan, J., Koyumdjisky, H.: Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel. Geoderma 35, 47–67 (1985)CrossRefGoogle Scholar
  20. 20.
    Booth, J.S., Dahl, A.G.: A note on the relationships between organic matter and some geotechnical properties of marine sediment. Mar. Geotechnol. 6, 281–297 (1986)CrossRefGoogle Scholar
  21. 21.
    Lee, H., Kayen, R., McArthur, W.: Consolidation, Triaxial shear-strength, and index-property characteristics of organic-rich sediment from the peru continental margin: results from Leg 1121, The Ocean Drilling Program. Sci. Results 112, 638–651 (1990)Google Scholar
  22. 22.
    Malkawi, H., Alawneh, A., Abu-Safaqah, O.: Effects of organic matter on the physical and the physicochemical properties of an illitic soil. Appl. Clay Sci. 14, 257–278 (1999)CrossRefGoogle Scholar
  23. 23.
    Pupal, A.J., Pokala, S.P., Intharasombat, N., Williammee, R.: Effects of organic matter on physical, strength, and volume change properties of compost amended expansive clay. J. Geotech 133, 1449–1461 (2007)Google Scholar
  24. 24.
    Olgun, M., Yildiz, M.: Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil. Appl. Clay Sci. 48, 615–621 (2010)CrossRefGoogle Scholar
  25. 25.
    Adejumo, T.E.: Effect of organic content on compaction and consolidation characteristics of lagos organic clay. Electron. J. Geotech. Eng. 17, 2201–2211 (2012)Google Scholar
  26. 26.
    Moradi, S.: Impacts of organic carbon on consistency limits in different soil textures. IJACS 5, 1381–1388 (2013)Google Scholar
  27. 27.
    Ling-Ling, Z., Zhen-Shun, H., Wang, C., Yang, Z.-Z.: Experimental study on physical properties of clays with organic matter soluble and insoluble in water. Appl. Clay Sci. 132, 660–667 (2016)Google Scholar
  28. 28.
    Stanchi, S., Catoni, M., D’amico, M.E., Falsone, G., Bonifacio, E.: Liquid and plastic limits of clayey, organic c-rich mountain soils: role of organic matter and mineralogy. Catena 151, 238–246 (2017)CrossRefGoogle Scholar
  29. 29.
    Van Bemmelen, J.M.: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden. Die Landwirthschaftlichen Versuchs-Stationen 37, 279–290 (1890)Google Scholar
  30. 30.
    Walkley, A., Black, I.A.: An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–37 (1934)CrossRefGoogle Scholar
  31. 31.
    Seybold, C.A., Elrashidi, M.A., Engel, R.J.: Linear regression models to estimate soil liquid limit and plasticity index from basic soil properties. Soil Sci. 173, 25–34 (2008)CrossRefGoogle Scholar
  32. 32.
    Huang, P.-T., Patel, M., Santagata, M.C., Bobet, A.: Classification of organic soils. Report no. FHWA/IN/JTRP-2008/2 (2009)Google Scholar
  33. 33.
    ISO 13320: Particle size analysis—laser diffraction methods (2009)Google Scholar
  34. 34.
    NF EN 12880: Characterization of sludges—determination of dry residue and water content (2000)Google Scholar
  35. 35.
    XP P 94-047: Sols: reconnaissance et essais—Détermination de la teneur pondérale en matières organiques d’un matériau—Méthode par calcination (1998)Google Scholar
  36. 36.
    NF P94-054: Sols: reconnaissance et essais—Détermination de la masse volumique des particules solides des sols—Méthode du pycnomètre à eau (1991)Google Scholar
  37. 37.
    NF P94-068: Soils: investigation and testing. Measuring of the methylene blue adsorption capacity of à rocky soil. Determination of the methylene blue of à soil by means of the stain test (1998)Google Scholar
  38. 38.
    XP CEN ISO/TS 17892-12: Geotechnical investigation and testing—Laboratory testing of soil Part 12: determination of Atterberg limits (2005)Google Scholar
  39. 39.
    ISO 9277: Determination of the specific surface area of solids by gas adsorption—BET method (2010)Google Scholar
  40. 40.
    NBN EN 1744-1 + A1: Essais visant à déterminer les propriétés chimiques des granulats—Partie 1: Analyse chimique (2013)Google Scholar
  41. 41.
    McDonald, W.: Influence of organic matter on the geotechnical properties and consolidation characteristics of Northern Oregon continental slope sediments. M.S. Thesis, Oregon State University (1983)Google Scholar
  42. 42.
    Jain, V.K., Mahabir, D., Chitra, R.: Correlation of plasticity index and compression index of soil. Int. J. Innov. Eng. Technol. 5(3), 263–270 (2015)Google Scholar
  43. 43.
    Otçu, N.U., Uzundurukan, S., Kaplan, S.: Determination of the plasticity index of soils with fine-grained soils using methylene blue test. J. Geosci. Environ. Prot. 05(3), 165–181 (2017)Google Scholar
  44. 44.
    GTR: Guide technique pour la réalisation des remblais et des couches de forme. SETRA (2000)Google Scholar
  45. 45.
    American Association of State Highway and Transportation Officials: AASHTO engineering classification of soil (1982)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringInstitut Mines Telecom Lille DouaiDouaiFrance

Personalised recommendations