Advertisement

Effects of Laser Irradiation and Ni Nanoparticles on Biogas Production from Anaerobic Digestion of Slurry

Original Paper

Abstract

This study investigated the simultaneous effects of nanoparticles (NPs) addition to rumen fluid (archaea source) and laser irradiation of the mixture on biogas production from anaerobic digestion of dairy manure. Where, the previous study reported that the addition of 2 mg L−1 nickel nanoparticles (Ni NPs) significantly (p < 0.05) increased the biogas and methane volumes by 1.74 and 2.01 times compared to the control, respectively. The results indicated that the most efficient irradiation time was 2 h laser with the addition of 2 mg L−1 Ni NPs (p < 0.05), which minimized the lag phase from 4 days to 1 day and the Hydraulic Retention Time (HRT) to attain the peak of biogas production in comparison to the control from 28 days to 16 days. The combination of laser irradiation and nanoparticles addition yielded the highest significant value of the specific biogas and methane production, compared to all treatments (incandescent light, control), which were 679.5 mL biogas g−1 VS and 453.3 mL CH4 g−1 VS. Furthermore, Laser photocatalysis of Ni NPs enhances the photo-reduction/photo-oxidation of CH4 formation pathways. Consequently, this treatment increased the biogas and methane volumes by 1.9 and 2.32 times the biogas and methane volumes resulted from the control, respectively.

Keywords

Biogas Laser radiation Anaerobic digestion Nanoparticles Methane production Manure 

Notes

Acknowledgements

This study was conducted at the National Institute of Laser Enhanced Sciences (NILES), and funded by Cairo University, Egypt. Therefore, we acknowledge NILES and Cairo University. Sincere gratitude to Dr. Ibrahim Yacoub, Assistant Professor of Agronomy at the Faculty of Agriculture (Cairo University) for his hard work in performing the statistical analysis.

References

  1. 1.
    Feng, Y., Zhang, Y., Quan, X., Chen, S.: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 52, 242–250 (2014)CrossRefGoogle Scholar
  2. 2.
    Slimane, K., Fathya, S., Assia, K., Hamza, M.: Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: process stability and biogas production. Energy Procedia 50, 57–63 (2014)CrossRefGoogle Scholar
  3. 3.
    El-Mashad, H.M., Van Loon, K.P., Wilko, G., Zeeman, G.P.A., Bot, G., Lettinga, G.: Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Environ. Sci. Technol. 2, 53–66 (2003)Google Scholar
  4. 4.
    Ravuri, H.K.: Role of factors influencing on anaerobic process for production of bio hydrogen. Future Fuel. Int. J. Adv. Chem. 1(2), 31–38 (2013)Google Scholar
  5. 5.
    Amaya, O.M., Barragán, M.T.C., Tapia, F.J.A.: Microbial biomass in batch and continuous system, biomass now. In: Matovic, M. D. (ed.) Sustainable Growth and Use. InTech, London (2013). ISBN 978-953-51-1105-4,  https://doi.org/10.5772/55303 Google Scholar
  6. 6.
    Chen, J.L., Ortiz, R., Steele, T.W.J., Stuckey, D.C.: Toxicants inhibiting anaerobic digestion: a review. Biotechnol. Adv. 32, 1523–1534 (2014)CrossRefGoogle Scholar
  7. 7.
    Tada, C., Sawayama, S.: Photoenhancement of biogas production from thermophilic anaerobic digestion. J. Biosci. Bioeng. 98, 387–390 (2004)CrossRefGoogle Scholar
  8. 8.
    Abdelsalam, E.: Application of laser and nanotechnology to increase biogas production. PhD dissertation, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Egypt (2015)Google Scholar
  9. 9.
    Olson, K.D., Mcmathon, C.W., Wolfe, R.S.: Light sensitivity of methanogenic archaebacteria. Appl. Environ. Microbiol. 57, 2683–2686 (1991)Google Scholar
  10. 10.
    Fedoseyeva, G.E., Karu, T.I., Lyapunova, T.S., Pomoshnikova, N.A., Meissel, M.N.: The activation of yeast metabolism with He–Ne laser radiation. I. Protein synthesis in various cultures. Lasers Life Sci. 2, 137–146 (1988)Google Scholar
  11. 11.
    Fedoseyeva, G.E., Karu, T.I., Lyapunova, T.S., Pomoshnikova, N.A., Meissel, M.N.: The activation of yeast metabolism with He-Ne laser. II. Activity of enzymes of oxidative and phosphorus metabolism. Lasers Life Sci. 2, 147–154 (1988)Google Scholar
  12. 12.
    Karu, T.I.: Effects of visible radiation on cultured cells. Photochem. Photobiol. B 52, 1089–1098 (1990)CrossRefGoogle Scholar
  13. 13.
    Tiphlova, O.A., Karu, T.I.: Effect of argon laser radiation and noncoherent blue light on Escherichia coli. Radiobiologia 26, 829–832 (1986)Google Scholar
  14. 14.
    Karu, T.I., Tiphlova, O.A., Letokhov, V.S., Lobko, V.V.: Stimulation of E. coli growth by laser and incoherent red light. Nuovo Cimento D 2, 1138–1144 (1983)CrossRefGoogle Scholar
  15. 15.
    Argun, H., Kargi, F.: Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int. J. Hydrogen Energy 35, 1604–1612 (2010)CrossRefGoogle Scholar
  16. 16.
    Olson, K.D., Mcmathon, C.W., Wolfe, R.S.: Photoactivation of the 2-(methylthio)ethanesulfonic acid reductase from Methanobacterium. Proc. Natl. Acad. Sci. USA 88: 4013–4099 (1991)Google Scholar
  17. 17.
    Ellermann, J., Hedderich, R., Bocher, R., Thauer, R.K.: The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172, 669–677 (1988)CrossRefGoogle Scholar
  18. 18.
    Karu, T., Pyatibrat, L., Kalendo, G.: Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. Photochem. Photobiol. B 27, 219–223 (1995)CrossRefGoogle Scholar
  19. 19.
    Kato, M., Shmzawa, K., Yoshikawa, S.: Cytochrome oxidase is a possible photoreceptor in mitochondria. Photochem. Photobiol. B 2, 263–269 (1981)Google Scholar
  20. 20.
    Vekshm, N.L., Mironov, G.P.: Flavin-dependent oxygen uptake in mitochondria under illumination. Biofizika 27, 537–539 (1982)Google Scholar
  21. 21.
    Passarella, S., Casamassima, F., Molmari, S., Pastore, D., Quagliariello, E., Catalano, I.M., Cmgolam, A.: Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by He-Ne laser. FEBS Lett. 175, 95–99 (1984)CrossRefGoogle Scholar
  22. 22.
    Passarella, S., Perlmo, E., Quagliariello, E., Baldassarre, L., Catalano, I.M., Cmgolam, A.: Evidence of changes induced by He-Ne laser irradiation in the biochemical properties of rat liver mitochondria. Bioelectrochem. Bioenerg. 70, 185–198 (1983)CrossRefGoogle Scholar
  23. 23.
    Passarella, S., Ostum, A., Atlante, A., Quagliariello, E.: Increase in the ADP/ATP exchange in rate liver mitochondria irradiated in vitro by He-Ne laser. Biochem. Biophys. Res. Commun. 156, 978–986 (1988)CrossRefGoogle Scholar
  24. 24.
    Karu, T.I.: Primary and secondary mechanisms of action of visible to Near-IR radiation on cells. Photochem. Photobiol. B 49, 1–17 (1999)CrossRefGoogle Scholar
  25. 25.
    Pastore, D., Di Martino, C., Bosko, G., Passarella, S.: Stimulation of ATP synthesis via oxidative phosphorylation in wheat mitochondria irradiated with helium-neon laser. Biochem. Mol. Biol. Int. J. 39, 149–157 (1996)Google Scholar
  26. 26.
    Chhabra, A., Manjunath, K., Panigrahy, S., Parihar, J.: Spatial pattern of methane emissions from Indian livestock. Curr. Sci. 96(5), 683–692 (2009)Google Scholar
  27. 27.
    Nusbaum, N.J.: Dairy livestock methane remediation and global warming. J. Commun. Health 35(5), 500–502 (2010)CrossRefGoogle Scholar
  28. 28.
    Ma, J., Zhao, Q.B., Laurens, L.L.M., Jarvis, E.E., Nagle, N.J., Chen, S., Frear, C.S.: Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels 8, 141 (2015)CrossRefGoogle Scholar
  29. 29.
    Yıldırım, E., Ince, O., Aydin, S., Ince, B.: Improvement of biogas potential of anaerobic digesters using rumen fungi. Renew. Energy 109, 346–353 (2017)CrossRefGoogle Scholar
  30. 30.
    Budiyono, B., Widiasa, I.N., Johari, S., Sunarso, S.: Influence of inoculum content on performance of anaerobic reactors for treating cattle manure using rumen fluid inoculum. Int. J. Eng. Technol. 1(3), 109–116 (2009)Google Scholar
  31. 31.
    Sunarso, S., Johari, S., Widiasa, I.N., Budiyono, B.: The effect of feed to inoculums ratio on biogas production rate from cattle manure using rumen fluid as inoculums. Int. J. Sci. Eng. 1(2), 41–45 (2010)Google Scholar
  32. 32.
    Qiang, H., Lang, D.-L., Li, Y.-Y.: High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Bioresour. Technol. 103, 21–27 (2012)CrossRefGoogle Scholar
  33. 33.
    Abdelsalam, E., Samer, M., Abdel-Hadi, M.A., Hassan, H.E., Badr, Y.: Effects of CoCl2, NiCl2 and FeCl3 additives on biogas production. Misr J. Agric. Eng. 32(2), 843–862 (2015)Google Scholar
  34. 34.
    Gustavsson, J., Yekta, S.S., Sundberg, C., Karlsson, A., Ejlertsson, J., Skyllberg, U., et al.: Bioavailability of cobalt and nickel during anaerobic digestion of sulfurrich stillage for biogas formation. Appl. Energy 112, 473–477 (2013)CrossRefGoogle Scholar
  35. 35.
    Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D.: Effect of trace element supplementation on the mesophilic anaerobic digestion of food waste in batch trials: the influence of inoculum origin. Biochem. Eng. J. 70, 71–77 (2013)CrossRefGoogle Scholar
  36. 36.
    Parisi, C., Vigani, M., Rodríguez-Cerezo, E.: Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2), 124–127 (2015)CrossRefGoogle Scholar
  37. 37.
    Powell, J.J., Faria, N., Thomas-McKay, E., Pele, L.C.: Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34(3), J226–J233 (2010)CrossRefGoogle Scholar
  38. 38.
    Nassar, N.N.: Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184, 538–546 (2010)CrossRefGoogle Scholar
  39. 39.
    Nassar, N.N.: Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Bhatnagar, A. (ed.), Application of Adsorbents for Water Pollution Control. Bentham Science Publishers, Oak Park (2012)Google Scholar
  40. 40.
    Zhang, W.: Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003)CrossRefGoogle Scholar
  41. 41.
    Abdelsalam, E., Samer, M., Attia, Y., Abdel-Hadi, M.A., Hassan, H.E., Badr, Y.: Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew. Energ. 87(1), 592–598 (2016)CrossRefGoogle Scholar
  42. 42.
    Abdelsalam, E., Samer, M., Attia, Y., Abdel-Hadi, M.A., Hassan, H.E., Badr, Y.: Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 120, 842–853 (2017)CrossRefGoogle Scholar
  43. 43.
    Abdelsalam, E., Samer, M., Attia, Y., Abdel-Hadi, M.A., Hassan, H.E., Badr, Y.: Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energ. Convers. Manag. 14, 108–119 (2017)CrossRefGoogle Scholar
  44. 44.
    Subramanyam, K., Sreelekha, N., Amaranatha Reddy, D., Murali, G., Rahul Varma, K., Vijayalakshmi, R.P.: Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sci. 65, 68–78 (2017)CrossRefGoogle Scholar
  45. 45.
    Yamada, Y., Miyahigashi, T., Kotani, H., Ohkubo, K., Fukuzum, S.: Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy Environ. Sci. 5, 6111–6118 (2012)CrossRefGoogle Scholar
  46. 46.
    EPA: Total, Fixed, and Volatile Solids. Method 1684, January 2001, p. 20460. U.S. Environmental protection Agency, Engineering and Analysis Division (4303), Washington, DC (2001)Google Scholar
  47. 47.
    Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16, 1044–1052 (2011)CrossRefGoogle Scholar
  48. 48.
    Samer, M.: A software program for planning and designing biogas plants. Trans. ASABE 53(4), 1277–1285 (2010)CrossRefGoogle Scholar
  49. 49.
    Samer, M.: Biogas plant constructions. In: Kumar, S. (ed.) Biogas, pp. 343–368. InTech, Rijeka (2012). ISBN 978-953-51-0204-5,  https://doi.org/10.5772/31887 Google Scholar
  50. 50.
    Yang, Y., Tsukahara, K., Zhang, Z., Sugiura, N., Sawayama, S.: Optimization of illumination time for the production of methane using carbon felt fluidized bed bioreactor in thermophilic anaerobic digestion. Biochem. Eng. J. 44, 131–135 (2009)CrossRefGoogle Scholar
  51. 51.
    Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State University Press, Ames (1989)MATHGoogle Scholar
  52. 52.
    Abdelsalam, E., Samer, M., Abdel-Hadi, M.A., Hassan, H.E., Badr, Y.: The effect of buffalo dung treatment with paunch fluid on biogas production. Misr J. Agric. Eng. 32(2), 807–826 (2015)Google Scholar
  53. 53.
    Lee, S.S., Choi, C.K., Ahna, B.H., Moonb, Y.H.: In vitro stimulation of rumen microbial fermentation by a rumen anaerobic fungal culture. Anim. Feed Sci. Technol. 115, 215–226 (2004)CrossRefGoogle Scholar
  54. 54.
    Hu, Z.-H., Yu, H.-Q.: Anaerobic digestion of cattail by rumen cultures. Waste Manag. 26, 1222–1228 (2006)CrossRefGoogle Scholar
  55. 55.
    Daquiado, A.R., Cho, K.M., Kim, T.Y., Kim, S.C., Chang, H.-H., Lee, Y.B.: Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture independent method based on mcrA gene sequences. Anaerobe 27, 77–81 (2014)CrossRefGoogle Scholar
  56. 56.
    Bożym, M., Florczak, I., Zdanowska, P., Wojdalski, J., Klimkiewicz, M.: An analysis of metal concentrations in food wastes for biogas production. Renewable Energy 77, 467–472 (2015)CrossRefGoogle Scholar
  57. 57.
    Tada, C., Tsukahara, K., Sawayama, S.: Illumination enhances methane production from thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 71, 363–368 (2006)CrossRefGoogle Scholar
  58. 58.
    Tayade, U.S., Borse, A.U., Meshram, J.S.: First report on butea monosperma flower extract based nickel nanoparticles green synthesis and characterization. Int. J. Sci. Res. Sci. Eng. Technol. 4(3), 43–49 (2018). http://ijsrset.com/IJSRSET184312.php
  59. 59.
    Ferry, J.G.: How to make a living by exhaling methane. Annu. Rev. Microbiol. 64, 453–473 (2010)CrossRefGoogle Scholar
  60. 60.
    Rodionov, D.A., Hebbeln, P., Gelfand, M.S., Eitinger, T.: Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006)CrossRefGoogle Scholar
  61. 61.
    Zhang, Y., Rodionov, D.A., Gelfand, M.S., Gladyshev, V.N.: Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics. 10, 1–26 (2009).  https://doi.org/10.1186/1471-2164-10-78 CrossRefGoogle Scholar
  62. 62.
    Lin, D.G., Nishio, N., Mazumder, T.K., Nagai, S.: Influence of Co2+, Ni2+ and Fe2+ on the production of tetrapyrroles by Methanosarcina barkeri. Appl. Microbiol. Biotechnol. 30, 196–200 (1989)CrossRefGoogle Scholar
  63. 63.
    Kavitha, S., Kannah, R.Y., Ick Tae, Y., Khac-Uan, D.: J. Rajesh Banu, Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Biores. Technol. 197, 383–392 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.National Institute of Laser Enhanced Sciences (NILES)Cairo UniversityGizaEgypt
  2. 2.Department of Agricultural Engineering, Faculty of AgricultureCairo UniversityGizaEgypt
  3. 3.Department of Agricultural Engineering, Faculty of AgricultureSuez-Canal UniversityIsmailiaEgypt

Personalised recommendations