Skip to main content

Evaluation of Chemical Composition and In Vitro Antiinflammatory Effect of Marine Microalgae Chlorella vulgaris


The present study was aimed to investigate the nutritional composition, chemical components and anti-inflammatory activity of C. vulgaris. The isolated microalga was mass cultured in laboratory by selective media with optimum conditions. Protein content was found to be higher for 45.23% followed by carbohydrate (23.43%) and total lipid (18.12%). Minerals components was recorded by the following order: Magnesium > Calcium > Iron > Manganese > Zinc > Copper. Seven vitamins were estimated, vitamin B3 was recorded higher (13.3 mg/100 g) and B12 has shown lesser amount (0.21 mg/100 g). The pigments chlorophyll a, b and carotenoids were found to be 4.7 mg/g, 4.2 mg/g and 6.11 mg/g respectively. Secondary metabolite was extracted by methanol and chloroform and further screened for the in vitro anti-inflammatory effect through the inhibition of albumin denaturation, antiproteinase, hypotonicity-induced haemolysis and anti-lipoxygenase assays and results have been recorded by concentration dependent. From the results, the anti-inflammatory activities of the methanolic extract were found higher than the chloroform extract at 500 µg/ml. The functional groups of the potent methanolic extract were studied by FT-IR analysis which revealed the presence of alkane, nitro and carboxyl groups.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Ferreira, S.P., Soares, L.A., Costa, J.A.: Review: microalgae: an alternative source to obtain essential fatty acids. Revista de Ciências Agrárias (Portugal). 36, 275–287 (2013)

    Google Scholar 

  2. 2.

    Volk, R.B.: A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol. Res. 163(2), 161–167 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Iba˜nez, E., Cifuentes, A.: Benefits of using algae as natural sources of functional ingredients. J. Sci. Food Agri. 93(4), 703–709 (2013)

    Article  Google Scholar 

  4. 4.

    Harun, R., Singh, M., Forde, G.M., Danquah, M.K.: Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energy Rev. 14(3), 1037–1047 (2010)

    Article  Google Scholar 

  5. 5.

    Priyadarshani, I., Rath, B.: Commercial and industrial applications of micro algae – A review. J. Algal. Biomass Util. 3, 89–100 (2012)

    Google Scholar 

  6. 6.

    Masoj´ıdek, J., Pr´aˇsil, O.: The development of microalgal biotechnology in the Czech Republic. J. Indus. Microbiol. Biotech. 37(12), 1307–1317 (2010)

    Article  Google Scholar 

  7. 7.

    Costa, J.A.C., Morais, M.G.: Microalgae for food production. In: Soccol, C.R., Pandey, A., Larroche, C. (eds.) Fermentation Process Engineering in the Food Industry, p. 486. Taylor & Francis, Abingdon (2013)

    Google Scholar 

  8. 8.

    Costa, J.A.V., Radmann, E.M., Cerqueira, V.S., Santos, G.C., Calheiros, M.N.: Perfil de ´acidos graxos das microalgae Chlorella vulgaris, Chlorella minutissima, cultivadas em diferentes condic¸˜oes. Alimentos e Nutric¸˜ao Araraquara. 17(4), 429–436 (2006)

    Google Scholar 

  9. 9.

    Plaza, M., Herrero, M., Alejandro, A.C., Ib´a˜nez, E.: Innovative natural functional ingredients from microalgae. J. Agri. Food Chem. 57(16), 7159–7170 (2009)

    Article  Google Scholar 

  10. 10.

    Cha, K.H., Kang, S.W., Kim, C.Y., Um, B.H., Na, Y.R., Pan, C.H.: Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agri. Food Chem. 58(8), 4756–4761 (2010)

    Article  Google Scholar 

  11. 11.

    Tortora, G.J., Reynolds, S.: (eds.). Principles of Anatomy and Physiology. 7th edn., p. 695. Harper Collins College Publishers, New York (1993)

    Google Scholar 

  12. 12.

    Dineshkumar, R., Kumaravel, R., Sampathkumar, P.: Cultivation of efficient marine microalgae and their biochemical composition and its. antibacterial activity against human pathogens. J. Aqua. Mar. Biol. 5(4), 001–27 (2016)

    Google Scholar 

  13. 13.

    Lananan, F., Jusoh, A., Ali, N., Lam, S.S., Endut, A.: Effect of Conway medium and f/2 medium on the growth of six genera of south China sea marine microalgae. Biores. Technol. 141, 75–82 (2013)

    Article  Google Scholar 

  14. 14.

    John, D.M., Whitton, B.A., Brook, A.J.: The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  15. 15.

    Folch, J., Lees, M., Stanely, S.: A simple method for the isolation and purification of total lipids from animal G.H. J. Biol. Chem. 226, 497–509 (1957)

    Google Scholar 

  16. 16.

    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Annal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  17. 17.

    AOAC.: Official Methods of Analysis. (18th edn.). Association of Official Analytical Chemists. Washington. DC (1990)

  18. 18.

    Moovendhan, M., Ramasubburayan, R., Vairamani, S., Shanmugam, A., Palavesam, A., Immanuel, G.: Antibiotic efficacy and characterization of mangrove metabolites against UTI microbes. J. Herb. Spices Med. Plant. 21(2), 129–139 (2015)

    Article  Google Scholar 

  19. 19.

    Mizushima, Y., Kobayashi, M.: Interaction of anti-inflammatory drugs with serum preoteins, especially with some biologically active proteins. J. Pharma. Pharmacol. 20, 169- 173 (1968)

    Article  Google Scholar 

  20. 20.

    Oyedepo, O.O., Femurewa, A.J.: Anti-protease and membrane stabilizing activities of extracts of Fagra zanthoxiloides, Olax subscorpioides and Tetrapleura tetraptera. Int. J. Pharmacong. 33, 65–69 (1995)

    Article  Google Scholar 

  21. 21.

    Azeem, A.K., Dilip, C., Prasanth, S.S., Junise, V., Shahima, H.: Anti-inflammatory activity of the glandular extracts of Thunnus alalunga. Asia Pac. J. Med. 3(10), 412–20 (2010)

    Google Scholar 

  22. 22.

    Shinde, U.A., Kulkarni, K.R., Phadke, A.S., Nair, A.M., Dikshit, V.J., Mungantiwar, V.N., Saraf, M.N.: Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud Wood Oil. Ind. J. Exp. Biol. 37(3), 258–261 (1999)

    Google Scholar 

  23. 23.

    Kent, M., Welladsen, M.H., Mangott, A., Li, Y.: Nutritional evaluation of australian microalgae as potential human health supplements. PLOS ONE. 10(2), 1–14 (2015)

    Article  Google Scholar 

  24. 24.

    Rosario, C.J., Mary Josephine, R.: Mineral profile of edible algae Spirulina platensis. Int. J. Curr. Micro. App. Sci. 4(1), 478–483 (2015)

    Google Scholar 

  25. 25.

    Fabregas, J., Herrero, C.: Marine microalgae as a potential source of minerals in fish diets. Aquacul. 51, 237–243 (1986)

    Article  Google Scholar 

  26. 26.

    WHO-FAO. Vitamin and mineral requirements in human nutrition. 2nd edn., ISBN 92 4 154612 3, 1–15 pp (2004)

  27. 27.

    Fabregas, J., Herrero, C.: Vitamin content of four marine microalgae: Potential use as source of vitamins in nutrition. J. Indus. Microbiol. 5, 259–264 (1990)

    Article  Google Scholar 

  28. 28.

    Tang, G., Suter, P.M.: Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella and Dunaliella. J. Pharm. Nut. Sci. 1, 111–118 (2011)

    Google Scholar 

  29. 29.

    del Campo, A.J., García-González, M., Guerrero, M.G.: Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microb. Biotech. 74, 1163–1174 (2007)

    Article  Google Scholar 

  30. 30.

    Seyfabadi, J., Ramezanpour, Z., Amini, K.Z.: Protein, fatty acid and pigment content of Chlorella vulgaris under different light regimes. J. Appl. Phycol. 23, 721–726 (2011)

    Article  Google Scholar 

  31. 31.

    Sharma, R., Singh, P., Sharma, G.: V.K.: Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. Plant Path. Microbiol. 3(5), 3–5 (2012)

    Google Scholar 

  32. 32.

    Hynstova, V., Sterbova, D., Klejdus, B., Hedbavny, J., Huska, D., Adam, V.: Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. J. Pharma. Biomed. Anal. (2017)

    Article  Google Scholar 

  33. 33.

    Henriques, M., Silva, A., Rocha, J.: Communicating current research and educational topics and trends in applied microbiology, pp. 586–589. Formataex, Badajoz (2007)

    Google Scholar 

  34. 34.

    Leelaprakash, G., Dass, M.: S.: In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Inter. J. Drug Develop. Res. 3(3), 189–196 (2011)

    Google Scholar 

  35. 35.

    Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K.O., Romano, G., Ianora, A.: Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities. Fron. Mar. Sci. 3(68), 1–12 (2016)

    Google Scholar 

  36. 36.

    Radhika, D., Veerabahu, C., Priya, R.: Anti-inflammatory activities of some seaweed collected from the gulf of mannar coast, tuticorin, south India. Int. J.Phar. Biosci. 4(1), 39–44 (2013)

    Google Scholar 

  37. 37.

    Habashy, N.H., Abu Serie, M.M., Attia, W.E., Abdelgaleil, S.A.M.: Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. J. Func. Foods. 40, 317–328 (2018)

    Article  Google Scholar 

  38. 38.

    Abu-Serie, M.M., Habashy, N.H., Attia, W.E.: In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Comp. Alter. Med. 18, 154–159 (2018)

    Article  Google Scholar 

  39. 39.

    Moovendhan, M., Seedevi, P., Shanmugam, A., Vairamani, S.: Antibiotic susceptibility and functional group characterization of Pinna nobilis Metabolites against clinical isolates. J. Biol. Active Prod. Nat. 5(1), 52–57 (2015)

    Google Scholar 

  40. 40.

    Kansiz, M., Heraud, P., Wood, B., Burden, F., Beardall, J., McNaughton, D.: Fourier Transform Infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochem. 52, 407–417 (1999)

    Article  Google Scholar 

Download references


Authors are thankful to the Dean and Director, CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University for providing all necessary facilities.

Author information



Corresponding author

Correspondence to Pitchai Sampathkumar.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopal Prabakaran, Meivelu Moovendhan, Arumugam, A. et al. Evaluation of Chemical Composition and In Vitro Antiinflammatory Effect of Marine Microalgae Chlorella vulgaris. Waste Biomass Valor 10, 3263–3270 (2019).

Download citation


  • C. vulgaris
  • Vitamins
  • Pigments
  • Antiinflammatory
  • FT-IR