Advertisement

Ethanol Production from NaOH Pretreated Rice Straw: a Cost Effective Option to Manage Rice Crop Residue

Original Paper

Abstract

Rice straw, an abundant agro-residue, is available for energy production. In many parts of Asian countries, it is burnt on fields causing harm to the environment. Rice straw contains lignin, cellulose, hemicelluloses, and silicates making it recalcitrant. Pretreatment processes disintegrate lignin-carbohydrate matrix for efficient bioconversion of polysaccharides to fermentable sugars. A good number of physical, biological and chemical processes have been tried but degradation of polysaccharides and subsequent fermentation is still a challenge. Alkaline pretreatment causes effective delignification and swelling of biomass. The present study was performed on alkaline pretreatment of rice straw with 1% NaOH by autoclaving for 30 min at 121 °C at 10% solid loading. It was extracted with water to remove lignins, solids separated by filtrations and washed again to neutralize the pH. Water washing also led to removal of phenolic inhibitors. High (63%) glucan enrichment was obtained with concomitant lignin loss. Dry matter loss was around 50%. Enzymatic saccharification of the pretreated solids at 5 and 10% with Accellerase® 1500 for 24 h at 50 °C gave saccharification efficiency 76 and ~ 50% respectively. Hydrolysates containing 18 and 23 gL−1 sugars, supplemented with minimal salts, yeast extract, fermented by S. cerevisiae LN for 24 h yielded ~ 2 and 4 gL−1 ethanol with fermentation efficiency 55–66%. Thus, NaOH pretreatment is a cost effective option for ethanol production from rice straw. Lignin removed in prehydrolysates can be recovered by acidification.

Keywords

Rice straw management Alkaline pretreatment Fermentation Bioethanol Biomass hydrolysate 

Notes

Acknowledgements

This work was supported by the Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), India, (Grant No. 12-124). Authors are thankful to Director, IARI for providing infrastructural facilities for carrying out this work.

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

12649_2018_360_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)

References

  1. 1.
    National Policy on Biofuels Ministry of New and Renewable Energy (MNRE): Government of India (2009)Google Scholar
  2. 2.
    Shinoj, P., Raju, S.S., Joshi, P.K.: India’s biofuels production programme; need for prioritizing alternative options. Indian J. Agric. Sci. 81(5), 391–397 (2011)Google Scholar
  3. 3.
    Annual Report. Ministry of Petroleum and Natural Gas (MPNG), New Delhi, India (2016–2017). http://www.petroleum.nic.in
  4. 4.
    Pleissner, D., Demichelis, F., Mariano, S., Fiore, S., Guitierrez, I.M.N., Schneider, R., Venus, J.: Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Cleaner Prod. 143, 615–623 (2017)CrossRefGoogle Scholar
  5. 5.
    Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5(4), 337–353 (2015)Google Scholar
  6. 6.
    Chandrakant, P., Bisaria, V.S.: Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 18, 295–331 (1998)CrossRefGoogle Scholar
  7. 7.
    Grabber, J.H.: How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820–831 (2005)CrossRefGoogle Scholar
  8. 8.
    Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N.: Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 108, 67–93 (2007)Google Scholar
  9. 9.
    Wyman, C.E.: Handbook on Bioethanol: Production and Utilization. Taylor and Francis, Washington D.C. (1996)Google Scholar
  10. 10.
    Kim, S.J., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Biores. Technol. 199, 42–48 (2016)CrossRefGoogle Scholar
  11. 11.
    Liu, Z.H., Chen, H.Z.: Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Biores. Technol. 193, 345–356 (2015)CrossRefGoogle Scholar
  12. 12.
    Timug, B., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., Goud, V.V.: Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg. 81, 9–18 (2015)CrossRefGoogle Scholar
  13. 13.
    Kim, J.S., Lee, Y.Y., Torget, R.W.: Cellulosic hydrolysis under extremely low sulfuric acid and high temperature conditions. Appl. Biochem. Biotechnol. 91–93, 331–340 (2001)CrossRefGoogle Scholar
  14. 14.
    Yoo, C.G., Nghiem, N.P., Hicks, K.B., Kim, T.H.: Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Biores. Technol. 102, 10028–10034 (2011)CrossRefGoogle Scholar
  15. 15.
    Wati, L., Kumari, S., Kundu, B.S.: Paddy straw as substrate for ethanol production. Indian J. Microbiol. 47, 26–29 (2007)CrossRefGoogle Scholar
  16. 16.
    Pandiyan, K., Tiwari, R., Singh, S., Nain, P.K., Rana, S., Arora, A., Singh, S.B., Nain, L.: Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. using response surface methodology. Enzyme Res. (2014).  https://doi.org/10.1155/2014/764898 Google Scholar
  17. 17.
    McIntosh, S., Vancov, T.: Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenerg. 35, 3094–3103 (2011)CrossRefGoogle Scholar
  18. 18.
    Jeya, M., Zhang, Y.W., Kim, I.W., Lee, J.K.: Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirusta and statistical optimization of hydrolysis conditions by RSM. Biores. Technol. 100(21), 5155–5161 (2009)CrossRefGoogle Scholar
  19. 19.
    Gupta, R., Khasa, Y.P., Kuhad, R.C.: Evaluation of pretreatments methods in improving the enzymatic saccharification of cellulosic materials. Carbohyd. Polym. 84, 1103–1109 (2011)CrossRefGoogle Scholar
  20. 20.
    Cheng, Y.S., Zheng, Y., Yu, C.W., Dooley, T.M., Jenkins, B.M., VanderGheynst, J.S.: Evaluation of high solids alkaline pretreatment of rice straw. Appl. Biochem. Biotechnol. 162, 1768–1784 (2010)CrossRefGoogle Scholar
  21. 21.
    Park, Y.C., Kim, J.S.: Comparison of various alkaline pretreatment methods of Lignocellulosic biomass. Energy. 47, 31–35 (2012)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Keshwani, D.R., Redding, A.P., Cheng, J.J.: Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Biores. Technol. 101, 3583–3585 (2010)CrossRefGoogle Scholar
  23. 23.
    Kataria, R., Ghosh, S.: NaOH pretreatment and enzymatic hydrolysis of Saccharum spontaneum for reducing sugars production. Energy Sources A 36, 1028–1035 (2014)CrossRefGoogle Scholar
  24. 24.
    Li, M., Si, S., Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M., Zhao, C., Tu, Y., Zhou, S., Peng, L.: Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Biores. Technol. 169, 447–454 (2014)CrossRefGoogle Scholar
  25. 25.
    Jaisamut, K., Paulova, L., Patakova, P., Rychtera, M., Melzoch, K.: Optimization of alkali pretreatment of wheat straw to be used as substrate for biofuels production. Plant Soil Environ. 59, 537–542 (2013)CrossRefGoogle Scholar
  26. 26.
    Naseeruddin, S., Yadav, K.S., Sateesh, L., Manikyam, A., Desai, S., Venkateswar, R.L.: Selection of the best chemical pretreatment of lignocellulosic substrates Prosopis juliflora. Biores. Technol. 136, 542–549 (2013)CrossRefGoogle Scholar
  27. 27.
    Lee, J.W., Kim, J.Y., Jang, H.M., Lee, M.W., Park, J.M.: Sequence dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Biores. Technol. 182, 296–301 (2015)CrossRefGoogle Scholar
  28. 28.
    Taherzadeh, M.J., Niklasson, C.: Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. In ACS symposium series, Oxford University Press, Oxford (2004)Google Scholar
  29. 29.
    Arora, A., Priya, T., Sharma, P., Sharma, S., Nain, L.: Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal. Agric. Biotechnol. 8, 66–72 (2016)Google Scholar
  30. 30.
    Jung, Y.H., Park, H.M., Kim, D.H., Park, Y.C., Seo, J.H., Kim, K.H.: Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields. Biores. Technol. 198, 861–866 (2015)CrossRefGoogle Scholar
  31. 31.
    Saritha, M., Rajan, K., Carrier, D.J., Nain, L., Arora, A.: Insights into biological delignification of rice straw by Trametes hirsuta and Myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass Bioenerg. 76, 54–60 (2015)CrossRefGoogle Scholar
  32. 32.
    Agudelo, R.A., García-Aparicio, M.P., Görgens, J.F.: Steam explosion pretreatment of triticale (× Triticosecale wittmack) straw for sugar production. New Biotechnol. 33(1), 153–163 (2016)CrossRefGoogle Scholar
  33. 33.
    Choudhary, J., Saritha, M., Nain, L., Arora, A.: Enhanced saccharification of steam-pretreated rice straw by commercial cellulases supplemented with xylanase. J. Bioprocess Biotech. 4(7), 188–194 (2014)CrossRefGoogle Scholar
  34. 34.
    Sindhu, R., Kuttiraja, M., Prabisha, T.P., Binod, P., Sukumaran, R.K., Pandey, A.: Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Biores. Technol. 215, 110–116 (2016)CrossRefGoogle Scholar
  35. 35.
    Hashem, M., Ali, E.H., Abdel-Basset, R.: Recycling rice straw into biofuel. J. Agric. Sci. Technol. 15(4), 709–721 (2013)Google Scholar
  36. 36.
    Ghosh, P., Ghose, T.K.: Bioethanol in India: Recent past and emerging future. Adv. Biochem. Eng. Biotechnol. 85, 1–27 (2003)Google Scholar
  37. 37.
    Ghose, T.K.: Measurements of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)CrossRefGoogle Scholar
  38. 38.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  39. 39.
    Updegraff, D.M.: Semimicro determination of cellulose in biological materials. Annal Biochem. 32, 420–424 (1969)CrossRefGoogle Scholar
  40. 40.
    Templeton, D., Ehrman, T.: Determination of acid-insoluble lignin in biomass. Laboratory Analytical Procedure. NREL 3 (1995)Google Scholar
  41. 41.
    Saritha, M., Arora, A., Nain, L.: Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Biores. Technol. 104, 459–465 (2012)CrossRefGoogle Scholar
  42. 42.
    Wang, R., Unrean, P., Franzen, C.J.: Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol. Biofuels 9, 88–100 (2016)CrossRefGoogle Scholar
  43. 43.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  44. 44.
    Saritha, M., Arora, A., Singh, S., Nain, L.: Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Biores. Technol. 135, 12–17 (2013)CrossRefGoogle Scholar
  45. 45.
    Yang, X.X., He, C., Liu, J., Diao, H.: Influence on the physical properties of wheat straw via hydrothermal and chemical treatments. BioRes 11(3), 7345–7354 (2016)Google Scholar
  46. 46.
    Dai, Y., Si, M., Chen, Y., Zhang, N., Zhou, M., Liao, Q., Shi, D., Liu, Y.: Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Biores. Technol. 198, 725–731 (2015)CrossRefGoogle Scholar
  47. 47.
    Arora, A., Nain, L., Gupta, J.: Solid state fermentation of wood residues by Streptomyces griseus B1, a soil isolate and solubilization of lignins. World J. Microbiol. Biotechnol. 23, 303–308 (2005)CrossRefGoogle Scholar
  48. 48.
    Kurakake, M., Hirotsu, S., Shibata, M., Kubota, A., Makino, A.: Lignin antioxidants extracted from lignocellulosic biomasses by treatment with ammonia water. Ind. Crops Prod. 77, 1028–1032 (2015)CrossRefGoogle Scholar
  49. 49.
    Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D.: Top value-added chemicals from biomass Volume II- Results of screening for potential candidates from biorefinery lignin II. PNNL report no. PNNL-16983 (DOE contract no. DE-AC05-76RL01830). Pacific Northwest National Laboratory, Richland, WA (2007)Google Scholar
  50. 50.
    Wi, S.G., Choi, I.S., Kim, K.H., Kim, H.M., Bae, H.J.: Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels 6(1), 166–172 (2013)CrossRefGoogle Scholar
  51. 51.
    Abedinifar, S., Karimi, K., Khanahmadi, M., Taherzadeh, M.J.: Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenerg. 33, 828–833 (2009)CrossRefGoogle Scholar
  52. 52.
    Belal, E.B.: Bioethanol production from rice straw residues. Braz. J. Microbiol. 44(1), 225–234 (2013)CrossRefGoogle Scholar
  53. 53.
    Xue, C., Zhang, X., Wang, J., Xiao, M., Chen, L., Bai, F.: The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation. Biotechnol. Biofuels 10, 148 (2017)CrossRefGoogle Scholar
  54. 54.
    Kannan, E.: Straws in the wind. The Hindu, 10 Nov 2016Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Indian Institute of TechnologyMandiIndia
  3. 3.CCUBGA, Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations