Associação Brasileira do Alumínio: Relatório de sustentabilidade - reciclagem. Associação Brasileira do Alumínio, São Paulo (2012)
Google Scholar
International Aluminum Institute: Global Aluminium Recycling: A Cornerstone of Sustainable Development. International Aluminum Institute, London (2013)
Google Scholar
Associação Brasileira do Alumínio: Anuário Estatístico 2015. Associação Brasileira do Alumínio, São Paulo (2015)
Google Scholar
Shinzato, M.C., Hypolito, R.: Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. (2005). https://doi.org/10.1016/j.wasman.2004.08.005
Article
Google Scholar
Shinzato, M.C., Hypolito, R.: Effect of disposal of aluminum recycling waste in soil and water bodies. Environ. Earth Sci. (2016). https://doi.org/10.1007/s12665-016-5438-3
Article
Google Scholar
Gonzalo-Delgado, L., López-Delgado, A., López, F.A., Alguacil, F.J., López-Andrés, S.: Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag. Res. 29, 127–134 (2011). https://doi.org/10.1177/0734242X10378330
Article
Google Scholar
El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Recovery of high surface area alumina from aluminum dross tailings. J. Chem. Technol. Biotechnol. 75, 394 (2000)
Article
Google Scholar
El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, 137–144 (2003). https://doi.org/10.1016/S0032-5910(03)00047-0
Article
Google Scholar
Associação Brasileira de Normas Técnicas: NBR 12653: Materiais pozolânicos - especificação. ABNT, Rio de Janeiro (2012)
Google Scholar
Kontori, E., Perraki, T., Tsivilis, S., Kakali, G.: Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J. Therm. Anal. Calorim. 96, 993–998 (2009). https://doi.org/10.1007/s10973-009-0056-x
Article
Google Scholar
Garbev, K., Black, L., Beuchle, G., Stemmermann, P.: Inorganic polymers in cement based materials. Wasser Geotechnol. 1, 19–30 (2002)
Google Scholar
Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., Elsen, J.: Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39, 233–240 (2009). https://doi.org/10.1016/j.cemconres.2008.11.008
Article
Google Scholar
Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23, 3352–3358 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.030
Article
Google Scholar
Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E.D.M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115 (2009). https://doi.org/10.1016/j.cemconres.2008.11.005
Article
Google Scholar
Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871 (2010). https://doi.org/10.1016/j.jenvman.2010.04.008
Article
Google Scholar
Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.003
Article
Google Scholar
Rukzon, S., Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012). https://doi.org/10.1016/j.matdes.2011.07.045
Article
Google Scholar
FIESP/CIESP: Ampliação da oferta de energia através da biomassa do Bagaço da cana-de- açúcar. FIESP/CIESP, São Paulo (2001)
Google Scholar
Companhia Nacional de Abastecimento: Acompanhamento da safra brasileira de cana-de-açúcar: safra 2017/18 - primeiro levantamento. CONAB, Brasília (2017)
Google Scholar
Perraki, T., Kakali, G., Kontoleon, F.: The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 61, 205–212 (2003). https://doi.org/10.1016/S1387-1811(03)00369-X
Article
Google Scholar
Zhang, Z., Guo, J., Liang, C.: Contribution of zeolite to the hydration of cement. In: Mumpton, F.A. (ed.) Proceedings of the 4th International Conference on Occurrence, Properties, Utilization of Natural Zeolites. pp. 221–223., New York (1995)
Caputo, D., Liguori, B., Colella, C.: Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem. Concr. Compos. 30, 455–462 (2008). https://doi.org/10.1016/j.cemconcomp.2007.08.004
Article
Google Scholar
Vigil de La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., Frías, M.: Evolution of the pozzolanic activity of a thermally treated zeolite. J. Mater. Sci. 48, 3213–3224 (2013). https://doi.org/10.1007/s10853-012-7101-z
Article
Google Scholar
Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001
Article
Google Scholar
Siddique, R., Khan, M.I.: Supplementary Cementing Materials. Springer, Berlin (2011)
Book
Google Scholar
Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011). https://doi.org/10.1016/j.cemconres.2010.11.003
Article
Google Scholar
Brykov, A., Anisimova, A.: Efficacy of aluminum hydroxides as inhibitors of alkali-silica reactions. Mater. Sci. Appl. 4, 1–6 (2013)
Google Scholar
Barger, G.S., Bayles, J., Blair, B., Brown, D., Chen, H., Conway, T., Hawkins, P.: Ettringite Formation and the Performance of Concrete. Portland Cement Association R&D, New York, pp. 1–16 (2001)
Google Scholar
Brykov, A.S., Vasil’ev, A.S., Mokeev, M.V.: Hydration of Portland cement in the presence of high activity aluminum hydroxides. Russ. J. Appl. Chem. 85, 1793–1799 (2012). https://doi.org/10.1134/S1070427212120014
Article
Google Scholar
Insituto de Pesquisas Tecnológicas do Estado de São Paulo: Atividade pozolânica: método de Chapelle modificado. IPT, São Paulo (1997)
Google Scholar
NBR 5752: Associação Brasileria de Cimento Portland: NBR 5752 Materiais Pozolânicos - Determinação da Atividade Pozolânica com Cimento Portland - índice de Atividade Pozolânica com Cimento - Método de Ensaio. ABNT, Rio de Janeiro (2012)
Google Scholar
Técnicas, A.B.D.N.: Guia básico de utilização do Cimento Portland. ABNT, Rio de Janeiro (2002)
Google Scholar
Técnicas, A.B.D.N.: NBR 7215: Cimento Portland - determinação da resistência à compresão. ABNT, Rio de Janeiro (1997)
Google Scholar
Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)
Book
Google Scholar
Du, C.: A review of magnesium oxide in concrete. Concr. Int. 27:45–50 (2005)
Google Scholar
Zhang, T., Cheeseman, C.R., Vandeperre, L.J.: Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 41, 439–442 (2011). https://doi.org/10.1016/j.cemconres.2011.01.016
Article
Google Scholar
David, E., Kopac, J.: Hydrolysis of aluminum dross material to achieve zero hazardous waste. J. Hazard. Mater. 209, 501–509 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.064
Article
Google Scholar
Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard. Mater. (2012). https://doi.org/10.1016/j.jhazmat.2012.03.052
Article
Google Scholar
Balan, E., Blanchard, M., Hochepied, J.F., Lazzeri, M.: Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Phys. Chem. Miner. 35, 279–285 (2008). https://doi.org/10.1007/s00269-008-0221-y
Article
Google Scholar
Bosmans, H.J.: Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 649–652 (1970). https://doi.org/10.1107/S0567740870002911
Article
Google Scholar
Schoen, R., Roberson, C.E.: Structures of aluminum hydroxide and geochemical implications. Am. Mineral. 55, 43–77 (1970)
Google Scholar
Barnhisel, R.I., Rich, C.I.: Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci. Soc. Am. J. 29, 531 (1965). https://doi.org/10.2136/sssaj1965.03615995002900050018x
Article
Google Scholar
Violante, P., Violante, A., Tait, J.M.: Morphology of nordstrandite. Clays Clay Miner. 30, 431–437 (1982). https://doi.org/10.1346/CCMN.1982.0300605
Article
Google Scholar
Prodromou, K.P., Pavlatou-Ve, A.S.: Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 43, 111–115 (1995). https://doi.org/10.1346/CCMN.1995.0430113
Article
Google Scholar
Cordeiro, G.C., Toledo Filho, R.D., Fairbairn, E.M.R.: Caracterização de cinzado bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios. Quim. Nova. 32, 82–86 (2009). https://doi.org/10.1590/S0100-40422010000800018
Article
Google Scholar
Martirena Hernández, J., Middendorf, B., Gehrke, M., Budelmann, H.: Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem. Concr. Res. 28, 1525–1536 (1998). https://doi.org/10.1016/S0008-8846(98)00130-6
Article
Google Scholar
Mindat.org: Quartz-beta. https://www.mindat.org/min-7395.html.
Wu, L.F., Shinzato, M.C., Andrade, S., Franchi, J.G., Andrade, VdaS.: Efeito da adição de zeólita e vermiculita na lixiviação de potássio do solo. Rev. do Inst. Geol. 34, 57–67 (2013). https://doi.org/10.5935/0100-929X.20130004
Article
Google Scholar
Baldo, J.B., Santos, W.N.: Phase transitions and their effects on the thermal diffusivity behavior of some SiO2 polymorphs. Ceramica. 48, 172–177 (2002). https://doi.org/10.1590/S0366-69132002000300011
Article
Google Scholar
Frías, M.: The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv. Cem. Res. 18, 1–6 (2006). https://doi.org/10.1680/adcr.2006.18.1.1
Article
Google Scholar
Zhang, T., Vandeperre, L.J., Cheeseman, C.R.: Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 65, 8–14 (2014). https://doi.org/10.1016/j.cemconres.2014.07.001
Article
Google Scholar
Kyritsis, K., Meller, N., Hall, C.: Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200 °C to 350 °C. J. Am. Ceram. Soc. 92, 1105–1111 (2009). https://doi.org/10.1111/j.1551-2916.2009.02958.x
Article
Google Scholar
Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379–1410 (2007). https://doi.org/10.1016/j.cemconres.2007.06.002
Article
Google Scholar
Ramachandran, V.S.: Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochim. Acta. 127, 385–394 (1988). https://doi.org/10.1016/0040-6031(88)87515-4
Article
Google Scholar
Kakali, G., Tsivilis, S., Aggeli, E., Bati, M.: Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res 30, 2–6 (2000)
Article
Google Scholar
Nied, D., Enemark-Rasmussen, K., L’Hopital, E., Skibsted, J., Lothenbach, B.: Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 79, 323–332 (2016). https://doi.org/10.1016/j.cemconres.2015.10.003
Article
Google Scholar
Fernández-Carrasco, L., Vázquez, E.: Reactions of fly ash with calcium aluminate cement and calcium sulphate. Fuel. 88, 1533–1538 (2009). https://doi.org/10.1016/j.fuel.2009.02.018
Article
Google Scholar
Wamba, A.G.N., Lima, E.C., Ndi, S.K., Thue, P.S., Kayem, J.G., Rodembusch, F.S., dos Reis, G.S., de Alencar, W.S.: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of brilliant green 1 and reactive black 5 from aqueous solutions. Environ. Sci. Pollut. Res. 24, 21807–21820 (2017). https://doi.org/10.1007/s11356-017-9825-4
Article
Google Scholar
Biricik, H., Sarier, N.: Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Mater. Res. 17, 570–582 (2014). https://doi.org/10.1590/S1516-14392014005000054
Article
Google Scholar
Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectrosc. – Mater. Sci. Eng. Technol. (2012). https://doi.org/10.5772/36186
Article
Google Scholar
Allahverdi, a, Kani, E., Yazdanipour, M.: Effects of blast furnace slag on natural pozzolan- based geopolymer cement. Ceram Silickáty. 55, 68–78 (2011)
Google Scholar
Frost, R.L., Xi, Y.: Whelanite Ca5Cu2(OH)2CO3, Si6O17·4H2O—a vibrational spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 319–323 (2012). https://doi.org/10.1016/j.saa.2012.02.003
Article
Google Scholar
Wang, L., He, Z., Cai, X.: Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 319–324 (2011). https://doi.org/10.1007/s11595-011-0222-4
Article
Google Scholar
Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P. (ed.) Lea’s Chemistry of Cement and Concrete, pp. 471–630. Arnold, London (1998)
Chapter
Google Scholar
Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M.C., Çulfaz, A.: Pozzolanic activity of clinoptilolite: a comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem. Concr. Res. 40, 398–404 (2010). https://doi.org/10.1016/j.cemconres.2009.10.016
Article
Google Scholar
Ahmadi, B., Shekarchi, M.: Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 32, 134–141 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.006
Article
Google Scholar
Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M.: An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023–1033 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.038
Article
Google Scholar
Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., MačEk, J., Meden, A.: Carboaluminate phases formation during the hydration of calcite-containing Portland cement. J. Am. Ceram. Soc. 94, 1238–1242 (2011). https://doi.org/10.1111/j.1551-2916.2010.04201.x
Article
Google Scholar
De Weerdt, K.: Ternary Blended Cements with Fly Ash and Limestone. Part II: Limestone Powder. State of the Art. SINTEF Report, SINTEF Building and Infrastructure/COIN - Concrete Innovation Centre, Trondheim, Norway (2007)
Google Scholar
Henmi, C., Kusachi, I.: Clinotobermorite, Ca5Si6(O,OH)18·5H2O, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag. 56, 353–358 (1992)
Article
Google Scholar
Fernández, R., Isabel Ruiz, A., Cuevas, J.: Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite. Clay Miner. 51, 223–235 (2016). https://doi.org/10.1180/claymin.2016.051.2.09
Article
Google Scholar
Collepardi, M.: A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 25, 401–407 (2003). https://doi.org/10.1016/S0958-9465(02)00080-X
Article
Google Scholar
Sutan, N.M., Yakub, I., Jaafar, M.S., Matori, K.A., Sahari, S.K.: Sustainable nanopozzolan modified cement: characterizations and morphology of calcium silicate hydrate during hydration. J. Nanomater. (2015). https://doi.org/10.1155/2015/713258
Article
Google Scholar
Girão, A.V., Richardson, I.G., Taylor, R., Brydson, R.M.D.: Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. Cem. Concr. Res. 40, 1350–1359 (2010). https://doi.org/10.1016/j.cemconres.2010.03.012
Article
Google Scholar
Grangeon, S., Claret, F., Linard, Y., Chiaberge, C.: X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69, 465–473 (2013). https://doi.org/10.1107/S2052519213021155
Article
Google Scholar
Grangeon, S., Fernandez-Martinez, A., Baronnet, A., Marty, N., Poulain, A., Elkaïm, E., Roosz, C., Gaboreau, S., Henocq, P., Claret, F.: Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry. J. Appl. Crystallogr. 50, 14–21 (2017). https://doi.org/10.1107/S1600576716017404
Article
Google Scholar
Martini, F., Borsacchi, S., Geppi, M., Tonelli, M., Ridi, F., Calucci, L.: Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1H NMR relaxometry. Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2017.05.031
Article
Google Scholar
Jambor, J.: Influence of 3CaO·Al2O3·CaCO3·nH2O on the structure of cement paste. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 487–492. Paris (1980)
Cussino, L., Negro, A.: Hydratation du ciment alumineux en presence d’agrégar siliceux et calcaire. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 62–67. Paris (1980)
Cizer, Ö, Van Balen, K., Van Gemert, D.: Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133–134, 241–246 (2010). https://doi.org/10.4028/www.scientific.net/AMR.133-134.241
Article
Google Scholar