Skip to main content

Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite

Abstract

The pozzolanic activity of aluminum recycling waste (AW) was evaluated along with sugarcane bagasse ash (BA) and zeolite (ZE) to give a more sustainable use. These materials were characterized and submitted to the pozzolanic activity test by a modified Chapelle test and the compressive strength of mortars prepared with limestone Portland cement (LPC). The final solids were characterized again to determine the hydrated products. The main reactive chemical components of AW are Al2O3 and MgO, which are in the form of hydroxides, such as nordstrandite (Al(OH)3), meixnerite ([Mg5Al3(OH)16][(OH)3·(H2O)4]), brucite (Mg(OH)2) and magnesium chloride hydroxide hydrate (Mg3(OH)5Cl·4H2O). All of the studied materials were classified as pozzolans by the modified Chapelle test, and the main hydrated products formed in the AW sample were katoite, ettringite, talc and amesite. When mixed with BA and ZE, C-A-S-H and C-S-H phases were also formed. The C-S-H phases and portlandite were detected only in the solids of the modified Chapelle test of BA and ZE. Calcite was present in all samples, indicating that part of the Ca(OH)2 was consumed by the carbonation process. The compressive strength test of mortars revealed that only ZE is a pozzolan. In mortars containing AW the production of ettringite and calcium carboaluminate increased due to the reactions of aluminum, respectively, with gypsum and calcite present in LPC. In addition to portlandite, C-S-H was formed only in the BA and ZE mortars. Although hydration reactions were not sufficient to form C-S-H in AW mortar, reactive aluminum favors the formation of primary ettringite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Associação Brasileira do Alumínio: Relatório de sustentabilidade - reciclagem. Associação Brasileira do Alumínio, São Paulo (2012)

    Google Scholar 

  2. International Aluminum Institute: Global Aluminium Recycling: A Cornerstone of Sustainable Development. International Aluminum Institute, London (2013)

    Google Scholar 

  3. Associação Brasileira do Alumínio: Anuário Estatístico 2015. Associação Brasileira do Alumínio, São Paulo (2015)

    Google Scholar 

  4. Shinzato, M.C., Hypolito, R.: Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. (2005). https://doi.org/10.1016/j.wasman.2004.08.005

    Article  Google Scholar 

  5. Shinzato, M.C., Hypolito, R.: Effect of disposal of aluminum recycling waste in soil and water bodies. Environ. Earth Sci. (2016). https://doi.org/10.1007/s12665-016-5438-3

    Article  Google Scholar 

  6. Gonzalo-Delgado, L., López-Delgado, A., López, F.A., Alguacil, F.J., López-Andrés, S.: Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag. Res. 29, 127–134 (2011). https://doi.org/10.1177/0734242X10378330

    Article  Google Scholar 

  7. El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Recovery of high surface area alumina from aluminum dross tailings. J. Chem. Technol. Biotechnol. 75, 394 (2000)

    Article  Google Scholar 

  8. El-Katatny, E.A., Halawy, S.A., Mohamed, M.A., Zaki, M.I.: Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, 137–144 (2003). https://doi.org/10.1016/S0032-5910(03)00047-0

    Article  Google Scholar 

  9. Associação Brasileira de Normas Técnicas: NBR 12653: Materiais pozolânicos - especificação. ABNT, Rio de Janeiro (2012)

    Google Scholar 

  10. Kontori, E., Perraki, T., Tsivilis, S., Kakali, G.: Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J. Therm. Anal. Calorim. 96, 993–998 (2009). https://doi.org/10.1007/s10973-009-0056-x

    Article  Google Scholar 

  11. Garbev, K., Black, L., Beuchle, G., Stemmermann, P.: Inorganic polymers in cement based materials. Wasser Geotechnol. 1, 19–30 (2002)

    Google Scholar 

  12. Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., Elsen, J.: Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39, 233–240 (2009). https://doi.org/10.1016/j.cemconres.2008.11.008

    Article  Google Scholar 

  13. Chusilp, N., Jaturapitakkul, C., Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23, 3352–3358 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.030

    Article  Google Scholar 

  14. Cordeiro, G.C., Toledo Filho, R.D., Tavares, L.M., Fairbairn, E.D.M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115 (2009). https://doi.org/10.1016/j.cemconres.2008.11.005

    Article  Google Scholar 

  15. Fairbairn, E.M.R., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871 (2010). https://doi.org/10.1016/j.jenvman.2010.04.008

    Article  Google Scholar 

  16. Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.003

    Article  Google Scholar 

  17. Rukzon, S., Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012). https://doi.org/10.1016/j.matdes.2011.07.045

    Article  Google Scholar 

  18. FIESP/CIESP: Ampliação da oferta de energia através da biomassa do Bagaço da cana-de- açúcar. FIESP/CIESP, São Paulo (2001)

    Google Scholar 

  19. Companhia Nacional de Abastecimento: Acompanhamento da safra brasileira de cana-de-açúcar: safra 2017/18 - primeiro levantamento. CONAB, Brasília (2017)

    Google Scholar 

  20. Perraki, T., Kakali, G., Kontoleon, F.: The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 61, 205–212 (2003). https://doi.org/10.1016/S1387-1811(03)00369-X

    Article  Google Scholar 

  21. Zhang, Z., Guo, J., Liang, C.: Contribution of zeolite to the hydration of cement. In: Mumpton, F.A. (ed.) Proceedings of the 4th International Conference on Occurrence, Properties, Utilization of Natural Zeolites. pp. 221–223., New York (1995)

  22. Caputo, D., Liguori, B., Colella, C.: Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem. Concr. Compos. 30, 455–462 (2008). https://doi.org/10.1016/j.cemconcomp.2007.08.004

    Article  Google Scholar 

  23. Vigil de La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., Frías, M.: Evolution of the pozzolanic activity of a thermally treated zeolite. J. Mater. Sci. 48, 3213–3224 (2013). https://doi.org/10.1007/s10853-012-7101-z

    Article  Google Scholar 

  24. Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  25. Siddique, R., Khan, M.I.: Supplementary Cementing Materials. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Thomas, M.: The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res. 41, 1224–1231 (2011). https://doi.org/10.1016/j.cemconres.2010.11.003

    Article  Google Scholar 

  27. Brykov, A., Anisimova, A.: Efficacy of aluminum hydroxides as inhibitors of alkali-silica reactions. Mater. Sci. Appl. 4, 1–6 (2013)

    Google Scholar 

  28. Barger, G.S., Bayles, J., Blair, B., Brown, D., Chen, H., Conway, T., Hawkins, P.: Ettringite Formation and the Performance of Concrete. Portland Cement Association R&D, New York, pp. 1–16 (2001)

    Google Scholar 

  29. Brykov, A.S., Vasil’ev, A.S., Mokeev, M.V.: Hydration of Portland cement in the presence of high activity aluminum hydroxides. Russ. J. Appl. Chem. 85, 1793–1799 (2012). https://doi.org/10.1134/S1070427212120014

    Article  Google Scholar 

  30. Insituto de Pesquisas Tecnológicas do Estado de São Paulo: Atividade pozolânica: método de Chapelle modificado. IPT, São Paulo (1997)

    Google Scholar 

  31. NBR 5752: Associação Brasileria de Cimento Portland: NBR 5752 Materiais Pozolânicos - Determinação da Atividade Pozolânica com Cimento Portland - índice de Atividade Pozolânica com Cimento - Método de Ensaio. ABNT, Rio de Janeiro (2012)

    Google Scholar 

  32. Técnicas, A.B.D.N.: Guia básico de utilização do Cimento Portland. ABNT, Rio de Janeiro (2002)

    Google Scholar 

  33. Técnicas, A.B.D.N.: NBR 7215: Cimento Portland - determinação da resistência à compresão. ABNT, Rio de Janeiro (1997)

    Google Scholar 

  34. Taylor, H.F.W.: Cement Chemistry. Thomas Telford, London (1997)

    Book  Google Scholar 

  35. Du, C.: A review of magnesium oxide in concrete. Concr. Int. 27:45–50 (2005)

    Google Scholar 

  36. Zhang, T., Cheeseman, C.R., Vandeperre, L.J.: Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 41, 439–442 (2011). https://doi.org/10.1016/j.cemconres.2011.01.016

    Article  Google Scholar 

  37. David, E., Kopac, J.: Hydrolysis of aluminum dross material to achieve zero hazardous waste. J. Hazard. Mater. 209, 501–509 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.064

    Article  Google Scholar 

  38. Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard. Mater. (2012). https://doi.org/10.1016/j.jhazmat.2012.03.052

    Article  Google Scholar 

  39. Balan, E., Blanchard, M., Hochepied, J.F., Lazzeri, M.: Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Phys. Chem. Miner. 35, 279–285 (2008). https://doi.org/10.1007/s00269-008-0221-y

    Article  Google Scholar 

  40. Bosmans, H.J.: Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 649–652 (1970). https://doi.org/10.1107/S0567740870002911

    Article  Google Scholar 

  41. Schoen, R., Roberson, C.E.: Structures of aluminum hydroxide and geochemical implications. Am. Mineral. 55, 43–77 (1970)

    Google Scholar 

  42. Barnhisel, R.I., Rich, C.I.: Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci. Soc. Am. J. 29, 531 (1965). https://doi.org/10.2136/sssaj1965.03615995002900050018x

    Article  Google Scholar 

  43. Violante, P., Violante, A., Tait, J.M.: Morphology of nordstrandite. Clays Clay Miner. 30, 431–437 (1982). https://doi.org/10.1346/CCMN.1982.0300605

    Article  Google Scholar 

  44. Prodromou, K.P., Pavlatou-Ve, A.S.: Formation of aluminum hydroxides as influenced by aluminum salts and bases. Clays Clay Miner. 43, 111–115 (1995). https://doi.org/10.1346/CCMN.1995.0430113

    Article  Google Scholar 

  45. Cordeiro, G.C., Toledo Filho, R.D., Fairbairn, E.M.R.: Caracterização de cinzado bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios. Quim. Nova. 32, 82–86 (2009). https://doi.org/10.1590/S0100-40422010000800018

    Article  Google Scholar 

  46. Martirena Hernández, J., Middendorf, B., Gehrke, M., Budelmann, H.: Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem. Concr. Res. 28, 1525–1536 (1998). https://doi.org/10.1016/S0008-8846(98)00130-6

    Article  Google Scholar 

  47. Mindat.org: Quartz-beta. https://www.mindat.org/min-7395.html.

  48. Wu, L.F., Shinzato, M.C., Andrade, S., Franchi, J.G., Andrade, VdaS.: Efeito da adição de zeólita e vermiculita na lixiviação de potássio do solo. Rev. do Inst. Geol. 34, 57–67 (2013). https://doi.org/10.5935/0100-929X.20130004

    Article  Google Scholar 

  49. Baldo, J.B., Santos, W.N.: Phase transitions and their effects on the thermal diffusivity behavior of some SiO2 polymorphs. Ceramica. 48, 172–177 (2002). https://doi.org/10.1590/S0366-69132002000300011

    Article  Google Scholar 

  50. Frías, M.: The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv. Cem. Res. 18, 1–6 (2006). https://doi.org/10.1680/adcr.2006.18.1.1

    Article  Google Scholar 

  51. Zhang, T., Vandeperre, L.J., Cheeseman, C.R.: Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 65, 8–14 (2014). https://doi.org/10.1016/j.cemconres.2014.07.001

    Article  Google Scholar 

  52. Kyritsis, K., Meller, N., Hall, C.: Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200 °C to 350 °C. J. Am. Ceram. Soc. 92, 1105–1111 (2009). https://doi.org/10.1111/j.1551-2916.2009.02958.x

    Article  Google Scholar 

  53. Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37, 1379–1410 (2007). https://doi.org/10.1016/j.cemconres.2007.06.002

    Article  Google Scholar 

  54. Ramachandran, V.S.: Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochim. Acta. 127, 385–394 (1988). https://doi.org/10.1016/0040-6031(88)87515-4

    Article  Google Scholar 

  55. Kakali, G., Tsivilis, S., Aggeli, E., Bati, M.: Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res 30, 2–6 (2000)

    Article  Google Scholar 

  56. Nied, D., Enemark-Rasmussen, K., L’Hopital, E., Skibsted, J., Lothenbach, B.: Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 79, 323–332 (2016). https://doi.org/10.1016/j.cemconres.2015.10.003

    Article  Google Scholar 

  57. Fernández-Carrasco, L., Vázquez, E.: Reactions of fly ash with calcium aluminate cement and calcium sulphate. Fuel. 88, 1533–1538 (2009). https://doi.org/10.1016/j.fuel.2009.02.018

    Article  Google Scholar 

  58. Wamba, A.G.N., Lima, E.C., Ndi, S.K., Thue, P.S., Kayem, J.G., Rodembusch, F.S., dos Reis, G.S., de Alencar, W.S.: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of brilliant green 1 and reactive black 5 from aqueous solutions. Environ. Sci. Pollut. Res. 24, 21807–21820 (2017). https://doi.org/10.1007/s11356-017-9825-4

    Article  Google Scholar 

  59. Biricik, H., Sarier, N.: Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Mater. Res. 17, 570–582 (2014). https://doi.org/10.1590/S1516-14392014005000054

    Article  Google Scholar 

  60. Fernández-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S.: Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectrosc. – Mater. Sci. Eng. Technol. (2012). https://doi.org/10.5772/36186

    Article  Google Scholar 

  61. Allahverdi, a, Kani, E., Yazdanipour, M.: Effects of blast furnace slag on natural pozzolan- based geopolymer cement. Ceram Silickáty. 55, 68–78 (2011)

    Google Scholar 

  62. Frost, R.L., Xi, Y.: Whelanite Ca5Cu2(OH)2CO3, Si6O17·4H2O—a vibrational spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 319–323 (2012). https://doi.org/10.1016/j.saa.2012.02.003

    Article  Google Scholar 

  63. Wang, L., He, Z., Cai, X.: Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26, 319–324 (2011). https://doi.org/10.1007/s11595-011-0222-4

    Article  Google Scholar 

  64. Massazza, F.: Pozzolana and pozzolanic cements. In: Hewlett, P. (ed.) Lea’s Chemistry of Cement and Concrete, pp. 471–630. Arnold, London (1998)

    Chapter  Google Scholar 

  65. Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M.C., Çulfaz, A.: Pozzolanic activity of clinoptilolite: a comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem. Concr. Res. 40, 398–404 (2010). https://doi.org/10.1016/j.cemconres.2009.10.016

    Article  Google Scholar 

  66. Ahmadi, B., Shekarchi, M.: Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 32, 134–141 (2010). https://doi.org/10.1016/j.cemconcomp.2009.10.006

    Article  Google Scholar 

  67. Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M.: An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023–1033 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.038

    Article  Google Scholar 

  68. Ipavec, A., Gabrovšek, R., Vuk, T., Kaučič, V., MačEk, J., Meden, A.: Carboaluminate phases formation during the hydration of calcite-containing Portland cement. J. Am. Ceram. Soc. 94, 1238–1242 (2011). https://doi.org/10.1111/j.1551-2916.2010.04201.x

    Article  Google Scholar 

  69. De Weerdt, K.: Ternary Blended Cements with Fly Ash and Limestone. Part II: Limestone Powder. State of the Art. SINTEF Report, SINTEF Building and Infrastructure/COIN - Concrete Innovation Centre, Trondheim, Norway (2007)

    Google Scholar 

  70. Henmi, C., Kusachi, I.: Clinotobermorite, Ca5Si6(O,OH)18·5H2O, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag. 56, 353–358 (1992)

    Article  Google Scholar 

  71. Fernández, R., Isabel Ruiz, A., Cuevas, J.: Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite. Clay Miner. 51, 223–235 (2016). https://doi.org/10.1180/claymin.2016.051.2.09

    Article  Google Scholar 

  72. Collepardi, M.: A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 25, 401–407 (2003). https://doi.org/10.1016/S0958-9465(02)00080-X

    Article  Google Scholar 

  73. Sutan, N.M., Yakub, I., Jaafar, M.S., Matori, K.A., Sahari, S.K.: Sustainable nanopozzolan modified cement: characterizations and morphology of calcium silicate hydrate during hydration. J. Nanomater. (2015). https://doi.org/10.1155/2015/713258

    Article  Google Scholar 

  74. Girão, A.V., Richardson, I.G., Taylor, R., Brydson, R.M.D.: Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. Cem. Concr. Res. 40, 1350–1359 (2010). https://doi.org/10.1016/j.cemconres.2010.03.012

    Article  Google Scholar 

  75. Grangeon, S., Claret, F., Linard, Y., Chiaberge, C.: X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69, 465–473 (2013). https://doi.org/10.1107/S2052519213021155

    Article  Google Scholar 

  76. Grangeon, S., Fernandez-Martinez, A., Baronnet, A., Marty, N., Poulain, A., Elkaïm, E., Roosz, C., Gaboreau, S., Henocq, P., Claret, F.: Quantitative X-ray pair distribution function analysis of nanocrystalline calcium silicate hydrates: a contribution to the understanding of cement chemistry. J. Appl. Crystallogr. 50, 14–21 (2017). https://doi.org/10.1107/S1600576716017404

    Article  Google Scholar 

  77. Martini, F., Borsacchi, S., Geppi, M., Tonelli, M., Ridi, F., Calucci, L.: Monitoring the hydration of MgO-based cement and its mixtures with Portland cement by 1H NMR relaxometry. Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2017.05.031

    Article  Google Scholar 

  78. Jambor, J.: Influence of 3CaO·Al2O3·CaCO3·nH2O on the structure of cement paste. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 487–492. Paris (1980)

  79. Cussino, L., Negro, A.: Hydratation du ciment alumineux en presence d’agrégar siliceux et calcaire. Proceedings of the 7th International Congress on Chemistry of the Cement. pp. 62–67. Paris (1980)

  80. Cizer, Ö, Van Balen, K., Van Gemert, D.: Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133–134, 241–246 (2010). https://doi.org/10.4028/www.scientific.net/AMR.133-134.241

    Article  Google Scholar 

Download references

Acknowledgements

We thank FAPESP (2011/13168-1) for financial support and CAPES for the scholarship for MSc Inara G. Braz. Special thanks to Mrs. Elizabeth Almeida of Reciclagem de Metais Fernão Dias Ltda., NIPE (UNIFESP-Campus Diadema), Celta Brasil and Indústria Santa Rosa. We also thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirian Chieko Shinzato.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braz, I.G., Shinzato, M.C., Montanheiro, T.J. et al. Effect of the Addition of Aluminum Recycling Waste on the Pozzolanic Activity of Sugarcane Bagasse Ash and Zeolite. Waste Biomass Valor 10, 3493–3513 (2019). https://doi.org/10.1007/s12649-018-0342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0342-6

Keywords

  • Aluminum hydroxide
  • Pozzolanic activity
  • Hydrated products
  • Carbonation