Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3125–3142 | Cite as

Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials

  • A. S. FonsecaEmail author
  • J. Raabe
  • L. M. Dias
  • A. E. R. Baliza
  • T. G. Costa
  • L. E. Silva
  • R. P. Vasconcelos
  • J. M. Marconcini
  • H. SavastanoJr.
  • L. M. Mendes
  • A. Yu
  • W. J. Orts
  • G. H. D. Tonoli
Original Paper


This study aimed to present the morphological, chemical, structural, thermal, and tensile properties of three Amazonian palm fibers (Leopoldinia piassaba—PIASSAVA, Desmoncus polyacanthos—JACITARA, and Astrocaryum sp.—TUCUM) and their inner (INN) and outer (OUT) portions, in order to provide support for possible use of these fibers as reinforcement in composites. TUCUM and TUCUM OUT presented the narrower fibers and lower lumen diameters, while JACITARA INN and OUT presented the wider fibers and higher lumen diameters. PIASSAVA and TUCUM INN were the shorter fibers, while JACITARA INN and OUT were the longer. TUCUM fibers presented the higher aspect ratio, wall fraction (WF), and coefficient of rigidity (CR). PIASSAVA fibers contain relatively higher lignin and extractive contents, which led to lower crystallinity index (CI), lower tensile strength (TS), lower modulus of elasticity (E), and higher elongation at break (EB) than others. JACITARA OUT fibers presented higher CI, thermal stability, and mechanical properties than JACITARA INN. TUCUM fibers presented the higher content of cellulose, and the higher values of TS and E, as also corroborated by their higher CI and thermal stability in relation to their counterparts. TUCUM INN exhibited more interesting characteristics (such as higher CI, thermal stability, and mechanical properties) than TUCUM OUT. The experimental results in the present work contribute to the widespread use of the different portions of these underexploited Amazonian palm fibers as a source of raw materials that may be used to engineer composites and new materials for a wide range of applications.


Piassava Tucum Jacitara Vegetable fibers Lignocellulosic fibers 



The authors would like to thank the Federal University of Lavras (UFLA) and the laboratory of electron microscopy and ultrastructural analysis (LME–UFLA) for supporting the experimental work, and the financial support granted by CAPES, CNPq, and FAPEMIG, Brazil. Thanks also to Maria Gorett dos Santos Marques (UFAM), Rede Brasileira de Compósitos e Nanocompósitos Lignocelulósicos (RELIGAR), and Research Nucleus on Materials for Biosystems—Biosmat (FZEA/USP), Brazil.


  1. 1.
    Spinacé, M.A.S., Janeiro, L.G., Bernardino, F.C., Grossi, T.A., De Paoli, M.A.: Poliolefinas Reforçadas com Fibras Vegetais Curtas: Sisal vs. Curauá. Polímeros 21(3), 168–174 (2011)Google Scholar
  2. 2.
    Yan, L., Kasal, B., Liang Huang, L.: A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. B 92, 94–132 (2016)Google Scholar
  3. 3.
    Rowell, R.M., Han, J.S., Rowell, J.S.: Characterization and factors affecting fiber properties. In: Frollini, E., Leão, A., Mattoso, L. H. C. (eds.) Natural Polymers and Agrofibers Based Composites: Preparation, Properties and Applications, pp. 115–134. Embrapa Instrumentação Agropecuária, São Carlos (2000)Google Scholar
  4. 4.
    Kabir, M.M., Wang, H., Lau, K.T., Cardona, F.: Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos. B 43(7), 2883–2892 (2012)Google Scholar
  5. 5.
    Joseph, K., Medeiros, E.S., Carvalho, L.H.: Compósitos de matriz poliéster reforçados por fibras curtas de sisal. [Composites of polyester matrix reinforced by short fibers of sisal]. Polimeros 9(4), 136–141 (1999)Google Scholar
  6. 6.
    Li, Y., Moyo, S., Ding, Z., Shan, Z., Qiu, Y.: Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Ind. Crops Prod. 51, 299–305 (2013)Google Scholar
  7. 7.
    Abdul Khalil, H.P.S., Alwani, M.S., Islam, M.N., Suhaily, S.S., Dungani, R., H’ng, Y.M., Jawaid, M.: The use of bamboo fibres as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 488–524. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  8. 8.
    Holt, G.A., Chow, P., Wanjura, J.D., Pelletier, M.G., Wedegaertner, T.C.: Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. Ind. Crops Prod. 52, 627–632 (2014)Google Scholar
  9. 9.
    Alves, C., Ferrão, P.M.C., Silva, A.J., Reis, L.G., Freitas, M., Rodrigues, L.B., Alves, D.E.: Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18, 313–327 (2010)Google Scholar
  10. 10.
    Khan, J.A., Khan, M.A.: The use of jute fibers as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Material, pp. 3–34. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  11. 11.
    Ramesh, M., Palanikumar, K., Hemachandra Reddy, K.: Mechanical property evaluation of sisal jute–glass fiber reinforced polyester composites. Compos. B 48, 1–9 (2013)Google Scholar
  12. 12.
    Hajiha, H., Sain, M.: The use of sugarcane bagasse fibres as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 525–549. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  13. 13.
    Monteiro, S.N., Lopes, F.P.D., Nascimento, D.C.O., Ferreira, A.S., Satyanarayana, K.G.: Processing and properties of continuous and aligned curauá fibers incorporated polyester composites. J. Mater. Res. Technol. 2(1), 2–9 (2013)Google Scholar
  14. 14.
    Souza, S.F., Ferreira, M., Sain, M., Ferreira, M.Z., Pupo, H.F., Cherian, B.M., Leão, A.L.: The use of curauá fibers as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 700–720. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  15. 15.
    Kocak, D., Mistik, S.I.: The use of palm leaf fibres as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 273–281. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  16. 16.
    Sena Neto, A.R., Araujo, M.A.M., Souza, F.V.D., Mattoso, L.H.C., Marconcini, J.M.: Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind. Crops Prod. 43, 529–537 (2013)Google Scholar
  17. 17.
    Sena Neto, A.R., Araujo, M.A.M., Barboza, R.M.P., Fonseca, A.S., Tonoli, G.H.D., Souza, F.V.D., Mattoso, L.H., Marconcini, J.M.: Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind. Crops Prod. 64, 68–78 (2015)Google Scholar
  18. 18.
    Leão, A.L., Cherian, B.M., Narine, S., Souza, S.F., Sain, M., Thomas, S.: The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 211–235. Woodhead Publishing, Elsevier, Cambridge (2015)Google Scholar
  19. 19.
    Scatolino, M.V., Bufalino, L., Mendes, L.M., Guimarães Junior, M., Tonoli, G.H.D.: Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci. Technol. 51, 1–21 (2017)Google Scholar
  20. 20.
    Scatolino, M.V., Silva, D.W., Bufalino, L., Tonoli, G.H.D., Mendes, L.M.: Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Proc. Eng. 200, 155–161 (2017)Google Scholar
  21. 21.
    Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 94(1), 154–169 (2013)Google Scholar
  22. 22.
    Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A., Abdulkhani, A.: Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym. 101, 878–885 (2014)Google Scholar
  23. 23.
    Abdul Khalil, H.P.S., Davoudpour, Y., Islam, Md.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M.: Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr. Polym. 99, 649–665 (2014)Google Scholar
  24. 24.
    Fonseca, C.S., Silva, T.F., Silva, M.F., Oliveira, I.R.C., Mendes, R.F., Hein, P.R.G., Mendes, L.M., Tonoli, G.H.D.: Micro/nanofibrilas celulósicas de Eucalyptus em fibrocimentos extrudados. [Eucalyptus cellulosic micro/nanofibrils in extruded fiber-cement composites]. CERNE 22, 59–68 (2016)Google Scholar
  25. 25.
    Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90(2), 735–764 (2012)Google Scholar
  26. 26.
    Santos, R.M., Flauzino Neto, W.P., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D.: Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crops Prod. 50, 707–714 (2013)Google Scholar
  27. 27.
    Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P., Pasquini, D.: Valorization of an agro industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manag. 121, 202–209 (2013)Google Scholar
  28. 28.
    Haafiz, M.K.M., Eichhorn, S.J., Hassan, A., Jawaid, M.: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 93(2), 628–634 (2013)Google Scholar
  29. 29.
    Bufalino, L., Sena Neto, A.R., Tonoli, G.H.D., Fonseca, A.S., Costa, T.G., Marconcini, J.M., Guimarães Júnior, M., Mendes, L.M.: How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22, 3657–3672 (2015)Google Scholar
  30. 30.
    Bufalino, L., Tonoli, G.H.D., Costa, T.G., Protásio, T.P., Sena Neto, A.R., Marconcini, J.M., Guimarães Júnior, M., Mendes, L.M.: Nanocellulose films from amazon forest wood wastes: structural and thermal properties. Key Eng. Mater. 668, 110–117 (2015)Google Scholar
  31. 31.
    Mikkonen, K.S., Tenkanen, M.: Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci. Technol. 28(2), 90–102 (2012)Google Scholar
  32. 32.
    Väisäne, T., Haapala, A., Lappalainen, R., Tomppo, L.: Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manag. 54, 62–73 (2016)Google Scholar
  33. 33.
    Al-Oqla, F.M., Sapuan, S.M.: Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354 (2014)Google Scholar
  34. 34.
    Luz, S.M., Caldeira-Pires, A., Ferrão, P.M.C.: Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resour. Conserv. Recycl. 54, 1135–1144 (2010)Google Scholar
  35. 35.
    Pegoretti, T.S., Mathieux, F., Evrard, D., Brissaud, D., Arruda, J.R.F.: Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector. Resour. Conserv. Recycl. 84, 1–14 (2014)Google Scholar
  36. 36.
    Taheri, F.: Advanced fibre-reinforced polymer (FRP) composites for the manufacture and rehabilitation of pipes and tanks in the oil and gas industry. In: Bai, J. (ed.) Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, Oxford (2013)Google Scholar
  37. 37.
    Zhang, Z., Chen, L., Ji, J., Huang, Y., Chen, D.: Antibacterial properties of cotton fabrics treated with chitosan. Text. Res. J. 73(12), 1103–1106 (2003)Google Scholar
  38. 38.
    Wang, B., Li, D.: Strong and optically transparent biocomposites reinforced with cellulose nanofibers isolated from peanut shell. Compos. A 79, 1–7 (2015)Google Scholar
  39. 39.
    Panthapulakkal, S., Sain, M.: Isolation of nanofibres from hemp and flax and their thermoplastic composites. Plast. Polym. Technol. 2, 9–16 (2013)Google Scholar
  40. 40.
    Tonoli, G.H.D., Teixeira, E.M., Correa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-da-Silva, M.A., Mattoso, L.H.C.: Cellulose micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 89, 80–88 (2012)Google Scholar
  41. 41.
    Teixeira, E.M., Bondancia, T.J., Teodoro, K.B.R., Corrêa, A.C., Marconcini, J.M., Mattoso, L.H.C.: Sugarcane bagasse whiskers: extraction and characterizations. Ind. Crops Prod. 33, 63–66 (2011)Google Scholar
  42. 42.
    Zhou, Y., Fan, M., Chen, L., Zhuang, J.: Lignocellulosic fibre mediated rubber composites: an overview. Compos. B 76, 180–191 (2015)Google Scholar
  43. 43.
    Omrani, E., Menezes, P.L., Rohatgi, P.K.: State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 19, 717–736 (2016)Google Scholar
  44. 44.
    Barari, B., Omrani, E., Moghadam, A.D., Menezes, P.L., Pillai, K.M., Rohatgi, P.K.: Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr. Polym. 147, 282–293 (2016)Google Scholar
  45. 45.
    Nopparut, A., Amornsakchai, T.: Influence of pineapple leaf fiber and its surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polym. Test. 52, 141–149 (2016)Google Scholar
  46. 46.
    Mesquita, R.G.A., César, A.A.S., Mendes, R.F., Mendes, L.M., Marconcini, J.M., Glenn, G., Tonoli, G.H.D.: Polyester composites reinforced with corona-treated fibers form pine, eucalyptus and sugarcane bagasse. J. Polym. Environ. 25(3), 800–811 (2016)Google Scholar
  47. 47.
    Cordeiro, N., Gouveia, C., Moraes, A.G.O., Amico, S.C.: Natural fibers characterization by inverse gas chromatography. Carbohydr. Polym. 84, 110–117 (2011)Google Scholar
  48. 48.
    Zah, R., Hischier, R., Leao, A.L., Braun, I.: Curauá fibers in the automotive industry—a sustainability assessment. J. Clean. Prod. 15, 1032–1040 (2007)Google Scholar
  49. 49.
    Dawkins, H.C., Philip, M.S.: Tropical Moist Forest Silviculture and Management—A History of Success and Failure. CAB International, Wallingford (1998)Google Scholar
  50. 50.
    Wong, J., Thornber, K., Baker, N.: Resource Assessment of Non-wood Forest Products: Experience and Biometric Principles. NWFP Series 13. Food and Agriculture Organization of the United Nations (FAO), Rome (2001)Google Scholar
  51. 51.
    Stockdale, M.: Steps to Sustainable and Community-Based NTFP Management. Non-Timber Forest Products-Exchange. Programme for South and Southeast Asia, Quezon City (2005)Google Scholar
  52. 52.
    Alves, E.: Apostila do curso introdutório à microscopia eletrônica de varredura e microanálise de raios x. [Introductory Course Tutorial to Scanning Electron Microscopy and X-Ray Microanalysis]. UFLA, Lavras (2012)Google Scholar
  53. 53.
    Franklin, G.L.: Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155, 51 (1945)Google Scholar
  54. 54.
    Coradin, V.T.R., Muñiz, G.I.D.E.: Normas e procedimentos em estudos de anatomia da madeira: I-Angiospermae II-Gimnospermae. [Norms and Procedures in Studies of Wood Anatomy: I-Angiospermae II-Gymnospermae]. IBAMA, Brasília (1992)Google Scholar
  55. 55.
    IAWA Committee: IAWA list of microscopic features for hardwood identification. Repr. IAWA J. 10, 219–332 (1989)Google Scholar
  56. 56.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2008)Google Scholar
  57. 57.
    de Paula, J.E., da Silva Junior, F.G.: Anatomia de madeiras indígenas com vista a produção de energia e papel. [Anatomy of indigenous wood for energy and paper production]. Pesqui. Agropecu. Bras. 29(12), 1807–1821 (1994)Google Scholar
  58. 58.
    Cardoso, M.S., Gonçalez, J.C.: Aproveitamento da casca do coco-verde (Cocos nucifera L.) para produção de polpa celulósica. [Use of the coconut-green bark (Cocos nucifera L.) for cellulosic pulp production]. Ciênc. Florest. 26(1), 321–330 (2016)Google Scholar
  59. 59.
    Guimarães, S.S.: Utilização das Fibras Vegetais no Fibro Cimento e no Concreto-Fibra. [Use of plant fibers in fibro-cement and concrete-fiber]. Centro de Pesquisas e Desenvolvimento/BNH, Rio de Janeiro (1982)Google Scholar
  60. 60.
    American Society for Testing and Materials, ASTM D 1107-1196.: Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM, Philadelphia (2013)Google Scholar
  61. 61.
    American Society for Testing and Materials, ASTM D1110-1184.: Standard Test Methods for Water Solubility of Wood. ASTM, Philadelphia (2013)Google Scholar
  62. 62.
    American Society for Testing and Materials, ASTM D 1106-1196.: Standard Test Method for Acid Insoluble Lignin in Wood. ASTM, Philadelphia (2013)Google Scholar
  63. 63.
    Browning, B.L.: Methods of Wood Chemistry. Wiley, New York (1967)Google Scholar
  64. 64.
    Kennedy, F., Phillips, G.O., Williams, E.P.A.: Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood, Chichester (1987)Google Scholar
  65. 65.
    French, A.D.: Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896 (2014)Google Scholar
  66. 66.
    Correia, V.C., Santos, D., Sain, V., Santos, M., Leão, S.F., Savastano, A.L., Júnior, H.: Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23, 2971–2987 (2016)Google Scholar
  67. 67.
    Macrae, C.F., Gruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Streek, J.V., Wood, P.A.: Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008)Google Scholar
  68. 68.
    Nam, S., French, A.D., Condon, B.D., Concha, M.: Segal crystallinity index revisited by simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135, 1–9 (2016)Google Scholar
  69. 69.
    Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)Google Scholar
  70. 70.
    Langford, J.I., Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)Google Scholar
  71. 71.
    Loelovich, M., Levkin, A., Figovsky, O.: Study of cellulose paracrystallinity. BioResources 5, 1393–1407 (2010)Google Scholar
  72. 72.
    Ballesteros, J.E.M., Dos Santos, V., Mármol, G., Frías, M., Fiorelli, J.: Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24, 2275–2286 (2017)Google Scholar
  73. 73.
    Tonoli, G.H.D., Holtman, K.M., Glenn, G., Fonseca, A.S., Wood, D., Williams, T., Sa, V.A., Torres, L., Klamczynski, A., Orts, W.J.: Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23, 1–18 (2016)Google Scholar
  74. 74.
    Jarabo, R., Monte, M.C., Blanco, A., Negro, C., Tijero, J.: Characterisation of agri-cultural residues used as a source of fibres for fibre-cement production. Ind. Crops Prod. 36, 14–21 (2012)Google Scholar
  75. 75.
    de Pereira, S.J., de Muñiz, B.G.I., Nigoski, S., Ceccantini, G.: Morfologia e densidade básica das folhas de Tucum (Bactris inundata Martius) como fonte de fibras celulósicas para papel. [Morphology and basic density of the Tucum leaves (Bactris inundata Martius) as source of cellulosic fibers for paper]. Ciência Florestal 12(1), 39–48 (2002)Google Scholar
  76. 76.
    Azzini, A., Benatti Júnior, R., Arruda, M.C.Q.: Características tecnológicas dos caules de juta visando a produção de pastas celulósicas para papel. [Technological characteristics of jute stalk aiming pulp production for paper]. Bragantia 45(2), 249–255 (1986)Google Scholar
  77. 77.
    Callister, W.D.: Materials Science and Engineering: An introduction, 8th edn. Wiley, Library of Congress, New York (2013)Google Scholar
  78. 78.
    Guimarães Junior, M., Novack, K.M., Botaro, V.R.: Caracterização anatômica da fibra de bambu (Bambusa vulgaris) visando sua utilização em compósitos poliméricos. [Anatomical characterization of bamboo fiber (Bambusa vulgaris) aiming its use in polymeric composites]. Rev. Iberoam. Polímeros 11(7), 442–456 (2010)Google Scholar
  79. 79.
    Martins, M.A.: Fibra de Sisal: Mercerização, Acetilação e Aplicação em Compósitos de Borracha de Pneu Triturado. [Sisal Fiber: Mercerization, Acetylation and Application in Crushed Tire Rubber Composites]. Universidade Estadual de Campinas, Brazil (2001)Google Scholar
  80. 80.
    Barrichelo, L.E.G., Foelkel, C.E.B., Brito, J.O.: Características anatômicas, químicas e celulósicas do bagaço de quatro variedades de cana-de-açúcar. In: Congresso anual da ABCP, vol. 9, pp. 97–106. ABTCP, São Paulo (1976)Google Scholar
  81. 81.
    Summerscales, J., Dissanayake, N., Virk, A., Hall, W.: A review of bast fibres and their composites. Part 2—composites. Compos. A 41, 1336–1344 (2010)Google Scholar
  82. 82.
    Hull, D.: An Introduction to Composite Materials. Cambridge University Press, Cambridge (1981)Google Scholar
  83. 83.
    Fonseca, A.S., Mori, F.A., Tonoli, G.H.D., Savastano Júnior, H., Ferrari, D.L., Miranda, I.P.A.: Properties of an Amazonian vegetable fiber as a potential reinforcing material. Ind. Crops Prod. 47, 43–50 (2013)Google Scholar
  84. 84.
    Foelkel, C.E.B., Barrichello, L.E.G.: Avaliação das madeiras para produção de celulose através de suas características estruturais: uma referência especial para o gênero Eucalyptus. [Evaluation of wood for pulp production through its structural characteristics: a special reference for Eucalyptus genus]. In: Seminário de integração floresta-indústria, pp. 5–33. IPEF, Piracicaba (1975)Google Scholar
  85. 85.
    Moreschi, J.C.: Levantamento da qualidade da madeira em plantações artificiais de Pinus elliotii nos estados do sul do Brasil. [Quality Survey of the Wood in Artificial Plantations of Pinus elliotii in the Southern States of Brazil]. Universidade Federal do Paraná, Curitiba (1975)Google Scholar
  86. 86.
    Rabello, M.: Aditivação de Polímeros. [Additivation of Polymers]. Artliber Editora, São Paulo (2000)Google Scholar
  87. 87.
    Bledzki, A.K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999)Google Scholar
  88. 88.
    Gurunathan, T., Mohanty, S., Nayak, S.K.A.: Review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A 77, 1–25 (2015)Google Scholar
  89. 89.
    Satyanarayana, K.G., Guimarães, J.L., Wypych, F.: Studies on lignocellulosic fibers of Brazil, part I: source, production, morphology, properties and applications. Compos. A 38, 1694–1709 (2007)Google Scholar
  90. 90.
    Tomczak, F., Satyanarayana, K.G., Sydenstricker, T.H.D.: Studies on lignocellulosic fibers of Brazil: Part III—morphology and properties of Brazilian curauá fibers. Compos. A 38, 2227–2236 (2007)Google Scholar
  91. 91.
    Tsoumis, G.: Science and Technology of Wood: Structure, Properties and Utilization. Van Nostrand Reinhold, New York (1991)Google Scholar
  92. 92.
    Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., Pawlak, J.J.: The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17, 835–848 (2010)Google Scholar
  93. 93.
    Alila, S., Besbes, I., Vilar, M.R., Mutjé, P., Boufi, S.: Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind. Crops Prod. 41, 250–259 (2013)Google Scholar
  94. 94.
    Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P.: Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76, 51–59 (2009)Google Scholar
  95. 95.
    Iwamoto, S., Abe, K., Yano, H.: The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9, 1022–1026 (2008)Google Scholar
  96. 96.
    Saheb, N.D., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)Google Scholar
  97. 97.
    Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., De Paoli, M.A.: Characterization of lignocellulosic curauá fibres. Carbohydr. Polym. 77, 47–53 (2009)Google Scholar
  98. 98.
    Aquino, E.M.F., Sarmento, L.P.S., Oliveira, W., Silva, R.V.: Moisture effect on degradation of jute/glass hybrid composites. J. Reinf. Plast. Compos. 26, 219–233 (2007)Google Scholar
  99. 99.
    Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)Google Scholar
  100. 100.
    Zhang, H.R., Tong, M.W.: Influence of hemicelluloses on the structure and properties of lyocell fibers. Polym. Eng. Sci. 47, 702–706 (2007)Google Scholar
  101. 101.
    Grüneberger, F., Künniger, T., Zimmermann, T., Arnold, M.: Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films. J. Mater. Sci. 49, 6437–6448 (2014)Google Scholar
  102. 102.
    Satyanarayana, K.G., Arizaga, G.G.C., Wypych, F.: Biodegradable composites based on lignocellulosic fibers—an overview. Prog. Polym. Sci. 34, 982–1021 (2009)Google Scholar
  103. 103.
    Dittenber, D.B., Ganga Rao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A 43, 1419–1429 (2012)Google Scholar
  104. 104.
    Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., … Lindström, T.: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007)Google Scholar
  105. 105.
    Cao, Y., Tan, H.: Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzym. Microb. Technol. 36, 314–317 (2005)Google Scholar
  106. 106.
    Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)Google Scholar
  107. 107.
    Besbes, I., Vilar, M.R., Boufi, S.: Nanofibrillated cellulose from TEMPO oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr. Polym. 84, 975–983 (2011)Google Scholar
  108. 108.
    Ciolacu, D., Ciolacu, F., Popa, V.I.: Amorphous cellulose—structure and characterization. Cellul. Chem. Technol. 45, 13–21 (2011)Google Scholar
  109. 109.
    Siroky, J., Blackburn, J.S., Bechtold, T., Taylor, J., White, P.: Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17, 103–115 (2010)Google Scholar
  110. 110.
    Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J.: Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76, 94–99 (2009)Google Scholar
  111. 111.
    Ray, D., Sarkar, B.K.: Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci. 80, 1013–1020 (2001)Google Scholar
  112. 112.
    Sun, R.C., Sung, X.F., Liu, G.Q., Fowler, P., Tomkinson, J.: Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polym. Int. 51, 117–124 (2002)Google Scholar
  113. 113.
    Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S.: Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 340, 97–106 (2005)Google Scholar
  114. 114.
    White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 91(1), 1–33 (2011)Google Scholar
  115. 115.
    Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1), 298–307 (2011)Google Scholar
  116. 116.
    Mukherjee, P.S., Satyanarayana, K.G.: Structure and properties of some vegetable fibers, Part 2: pineapple fibre. J. Mater. Sci. 21, 51–56 (1986)Google Scholar
  117. 117.
    Sao, K.P., Samantaray, B.K., Bhattacherjee, S.: X-ray study of crystallinity and disorder in Ramie fiber. J. Appl. Polym. Sci. 52, 1687–1694 (1994)Google Scholar
  118. 118.
    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)Google Scholar
  119. 119.
    Agopyan, V., Savastano, H. Jr., John, V.M., Cincotto, M.A.: Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cem. Concr. Comp. 27, 527–536 (2005)Google Scholar
  120. 120.
    Danso, H., Martinson, D.B., Ali, M., Williams, J.: Effect of fibre aspect ratio on mechanical properties of soil building blocks. Constr. Build. Mater. 83, 314–319 (2015)Google Scholar
  121. 121.
    Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63, 1259–1264 (2003)Google Scholar
  122. 122.
    Santos, N.S., Silva, M.R., Alves, J.L.: Reinforcement of a biopolymer matrix by lignocellulosic agro-waste. Proc. Eng. 200, 422–427 (2017)Google Scholar
  123. 123.
    Tonoli, G.H.D., Savastano, H., Fuente, E., Negro, C., Blanco, A., Rocco Lahr, F.A.: Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 31, 225–232 (2010)Google Scholar
  124. 124.
    Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S.: Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018)Google Scholar
  125. 125.
    Ardanuy, M., Claramunt, J., Toledo Filho, R.D.: Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr. Build. Mater. 79, 115–128 (2015)Google Scholar
  126. 126.
    Glória, G.O., Teles, M.C.A., Neves, A.C.C., Vieira, C.M.F., Lopes, F.P.D., de Almeida Gomes, M., Margem, F.M., Monteiro, S.N.: Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. J. Mater. Res. Technol. 6, 411–416 (2017)Google Scholar
  127. 127.
    Elzubair, A., Suarez, M.: Mechanical behavior of recycled polyethylene/piassava fiber composites. Mater. Sci. Eng. A. 557, 29–35 (2012)Google Scholar
  128. 128.
    Fortunati, E., Yang, W., Luzi, F., Kenny, J., Torre, L., Puglia, D.: Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. Eur. Polym. J. 80, 295–316 (2016)Google Scholar
  129. 129.
    Faludi, G., Hári, J., Renner, K., Móczó, J., Pukánszky, B.: Fiber association and network formation in PLA/lignocellulosic fiber composites. Compos. Sci. Technol. 77, 67–73 (2013)Google Scholar
  130. 130.
    Mirmehdi, S., Hein, P.R.G., Sarantopoulos, C.I.G.L., Dias, M.V., Tonoli, G.H.D.: Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag. Shelf Life 15, 87–94 (2018)Google Scholar
  131. 131.
    Guimarães Junior, M., Teixeira, F.G., Tonoli, G.H.D.: Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose 25, 1–27 (2018)Google Scholar
  132. 132.
    Prado, N.R.T., Raabe, J., Mirmehdi, S., Hugen, L.N., Lima, L.C., Ramos, A.L.S., Guimarães Junior, M., Tonoli, G.H.D.: Strength improvement of hydroxypropyl methylcellulose/ starch films using cellulose nanocrystals. CERNE 23, 423–434 (2018)Google Scholar
  133. 133.
    Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S.: Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2017)Google Scholar
  134. 134.
    Boufi, S., Gandini, A.: Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4), 303–313 (2001)Google Scholar
  135. 135.
    Gassan, J., Bledzki, A.K.: Effect of moisture content on the properties of silanized jute-epoxy composites. Polym. Compos. 18(2), 179–184 (1997)Google Scholar
  136. 136.
    Tonoli, G.H.D., Rodrigues Filho, U.P., Savastano, H. Jr., Bras, J., Belgacem, M.N., Lahr, F.A.R.: Cellulose modified fibres in cement based composites. Comp. A 40(12), 2046–2053 (2009)Google Scholar
  137. 137.
    Tonoli, G.H.D., Belgacem, M.N., Siqueira, G., Bras, J., Savastano, H. Jr., Lahr, F.A.R.: Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Compos. 37, 68–75 (2013)Google Scholar
  138. 138.
    Mendes, R.F., Mendes, L.M., Oliveira, J.E.D., Savastano, H. Jr., Glenn, G., Tonoli, G.H.D.: Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length. Polym. Eng. Sci. 55, 1273–1280 (2015)Google Scholar
  139. 139.
    Cordeiro, N., Oliveira, L., Faria, H., Belgacem, M.N., Moura, J.C.V.P.: Surface modification of banana-based lignocellulosic fibres. In: Mittal, K.L. (ed.) Contact angle, wettability and adhesion, vol. 4. Leiden, VSP (2006)Google Scholar
  140. 140.
    Tonoli, G.H.D., Mendes, R.F., Siqueira, G., Bras, J., Belgacem, M.N., Savastano Jr., H.: Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung 67, 1–9 (2013)Google Scholar
  141. 141.
    Tserki, V., Zafeiropoulos, N.E., Simon, F., Panayiotou, C.: A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. A 36(8), 1110–1118 (2005)Google Scholar
  142. 142.
    Mesquita, R.G.A., Cesar, A.A.S., Mendes, L.M., Marconcini, J.M., Tonoli, G.H.D.: Polyester composites reinforced with maleic anhydride-treated filaments from mauve. CERNE 24, 1–7 (2018)Google Scholar
  143. 143.
    Pinto, R.J.B., Marques, P.A.A.P., Barros-Timmons, A.M., Trindade, T., Neto, P.C.: Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. Compos. Sci. Technol. 68, 1088–1093 (2008)Google Scholar
  144. 144.
    Raabe, J., Fonseca, A.S., Bufalino, L., Ribeiro, C., Martins, M.A., Marconcini, J.M., Tonoli, G.H.D.: Biocomposite of cassava starch reinforced with cellulose pulp fibers with deposition of sílica (SiO2) nanoparticles. J. Nanomater. 2015, 1–9 (2015) Article ID 493439Google Scholar
  145. 145.
    Raabe, J., Fonseca, A.S., Bufalino, L., Ribeiro, C., Martins, M.A., Marconcini, J.M., Tonoli, G.H.D.: Evaluation of reaction factors for deposition of sílica (SiO2) nanoparticles on cellulose fibers. Carbohydr. Polym. 114, 424–431 (2014)Google Scholar
  146. 146.
    Raabe, J., Santos, L.P., Del Menezzi, C.H.S., Tonoli, G.H.D.: Effect of nano-silica deposition on cellulose fibers on the initial hydration of the Portland cement. Bioresources 13(2), 3525–3544 (2018)Google Scholar
  147. 147.
    Ruokolainen, K., Vormisto, J.: The most widespread Amazonian palms tend to be tall and habitat generalists. Basic Appl. Ecol. 1, 97–108 (2000)Google Scholar
  148. 148.
    Troy, A.R., Ashton, P.M.S., Larson, B.C.: A protocol for measuring abundance and size of a Neotropical Liana, Desmoncus polyacanthos (Palmae), relation to forest structure. Published by Springer on behalf of New York Botanical Garden Press access to Economic Botany. A protocol for Measuri. 51, pp. 339–346 (2011)Google Scholar
  149. 149.
    Kvist, L.P., Andersen, M.K., Stagegaard, J., Hesselsøe, M., Llapapasca, C.: Extraction from woody forest plants in flood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. For. Ecol. Manag. 150, 147–174 (2001)Google Scholar
  150. 150.
    Lescure, J., Emperaire, L., Franciscon, C.: Leopoldinia piassaba Wallace (Arecaceae): a few. For. Ecol. Manag. 55, 83–86 (1992)Google Scholar
  151. 151.
    Ministério do Meio Ambiente, Serviço Florestal Brasileiro. Plano Anual de Outorga Florestal: 2018. v. 12, n. 1, Brasília (2017)Google Scholar
  152. 152.
    Instituto Brasileiro de Geografia e Estatística (IBGE). Produção da extração vegetal e silvicultura. v.1 (1986- ), Rio de Janeiro (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. S. Fonseca
    • 1
    Email author
  • J. Raabe
    • 1
    • 2
  • L. M. Dias
    • 1
  • A. E. R. Baliza
    • 1
  • T. G. Costa
    • 1
  • L. E. Silva
    • 1
  • R. P. Vasconcelos
    • 3
  • J. M. Marconcini
    • 4
  • H. SavastanoJr.
    • 5
  • L. M. Mendes
    • 1
  • A. Yu
    • 6
  • W. J. Orts
    • 6
  • G. H. D. Tonoli
    • 1
    • 6
  1. 1.Department of Forest ScienceUniversidade Federal de LavrasLavrasBrazil
  2. 2.Department of Forest Engineering, Faculdade de TecnologiaUniversidade de Brasília - UnBBrasiliaBrazil
  3. 3.Department of Civil Engineering, Technology FacultyUniversidade Federal do AmazonasManausBrazil
  4. 4.National Nanotechnology Laboratory for AgrobusinessEmbrapa Instrumentação,Rua Quinze de NovembroSão CarlosBrazil
  5. 5.Department of Bio-systems Engineering, Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São Paulo (USP)PirassunungaBrazil
  6. 6.Bioproducts Research UnitWRRC, ARS-USDAAlbanyUSA

Personalised recommendations