Advertisement

Inoculation with Compost-Born Thermophilic Complex Microbial Consortium Induced Organic Matters Degradation While Reduced Nitrogen Loss During Co-Composting of Dairy Manure and Sugarcane Leaves

  • Jiaqi Xu
  • Yanyu Lu
  • Guangchun Shan
  • Xiao-Song He
  • Junhao Huang
  • Qunliang Li
Original Paper
  • 83 Downloads

Abstract

This investigation was carried out on the effects of compost-born thermophilic complex microbial consortium (TCMC) composed of Ureibacillus suwonensis (TB42), Geobacillus thermodenitrificans (TB62) and Bacillus licheniformis (TA65) on co-composting of dairy manure and sugarcane leaves. The study assessed the TCMC influence on physicochemical parameters and dissolved organic matter (DOM) properties. Compared to the control (CP), the inoculated pile (CPT) showed a longer thermophilic phase, a faster organic matter degradation, a better Kjeldahl nitrogen preservation as well as a greater aromaticity and stability of DOM. Consequently, the inoculation with TCMC agent was effective in reducing the loss of nitrogen and accelerating maturity of compost.

Keywords

Thermophilic complex microbial consortium Composting Inoculation Dissolved organic matter Aromaticity Maturity 

Notes

Acknowledgements

The author acknowledges other members of our laboratory for their technical assistance and helpful discussion. This work was supported by the Fangchenggang Science and Technology Program (NO. 16053002) and the Guangxi Natural Science Foundation Program (NO. 2017GXNSFAA198345).

References

  1. 1.
    Jurado, M.M., Suárez-Estrella, F., López, M.J., Vargas-García, M.C., López-González, J.A., Moreno, J.: Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 186, 15–24 (2015)CrossRefGoogle Scholar
  2. 2.
    Moreno, J., López, M.J., Vargas-García, M.C., Suárez-Estrella, F.: Recent advances in microbial aspects of compost production and use. Acta Horticult. 1013, 443–457 (2011)Google Scholar
  3. 3.
    Sánchez-Monedero, M.A., Roig, A., Paredes, C., Bernal, M.P.: Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 78(3), 301–308 (2001)CrossRefGoogle Scholar
  4. 4.
    Insam, H., De Bertoldi, M.: Microbiology of the composting process. Waste Manag. Ser. 8, 25–48 (2007)CrossRefGoogle Scholar
  5. 5.
    Xi, B.D., Huang, G.H., Zhang, G.J., Wei, Z.M., Qin, X.S., Liu, H.L.: A temperature-guided three-stage inoculation method for municipal solid wastes composting. Environ. Eng. Sci. 24(6), 745–754 (2007)CrossRefGoogle Scholar
  6. 6.
    Ren, L., Schuchardt, F., Shen, Y., Li, G., Li, C.: Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk. Waste Manag. 30(5), 885–892 (2010)CrossRefGoogle Scholar
  7. 7.
    Tiquia, S.M., Tam, N.F.: Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 37(8), 869–880 (2002)CrossRefGoogle Scholar
  8. 8.
    Gabhane, J., William, S.P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A.N., Wate, S.R.: Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 114, 382–388 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., Huang, H.: Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour. Technol. 102(3), 2950–2956 (2011)CrossRefGoogle Scholar
  10. 10.
    Sarkar, S., Banerjee, R., Chanda, S., Das, P., Ganguly, S., Pal, S.: Effectiveness of inoculation with isolated Geobacillus strains in the thermophilic stage of vegetable waste composting. Bioresour. Technol. 101(8), 2892–2895 (2010)CrossRefGoogle Scholar
  11. 11.
    Zeng, G., Yu, M., Chen, Y., Huang, D., Zhang, J., Huang, H., Yu, Z.: Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour. Technol. 101(1), 222–227 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Zeng, G., Chen, Y., Yu, M., Huang, H., Fan, C., Jiang, M.: Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Appl. Microbiol. Biotechnol. 97(7), 3159–3169 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhao, Y., Lu, Q., Wei, Y., Cui, H., Zhang, X., Wang, X., Wei, Z.: Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresour. Technol. 219, 196–203 (2016)CrossRefGoogle Scholar
  14. 14.
    Gou, C., Wang, Y., Zhang, X., et al.: Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. Bioresour. Technol. 243, 339–346 (2017)CrossRefGoogle Scholar
  15. 15.
    Xiang, L., Chan, L.C., Wong, J.W.C.: Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere. 41(1), 283–287 (2000)CrossRefGoogle Scholar
  16. 16.
    Yadav, J., Verma, J.P.: Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur. J. Soil. Biol. 63, 70–77 (2014)CrossRefGoogle Scholar
  17. 17.
    Xi, B.D., Liu, H.L., Huang, G.H., Zhang, B.Y., Qin, X.S.: Effect of bio-surfactant on municipal solid waste composting process. J. Environ Sci. 2005, 17(3), 409–413Google Scholar
  18. 18.
    Shi, J.G.: Rhamnolipids: surface chemical properties of application in municipal solid waste composting. China Patent: 03118042.6 (2005)Google Scholar
  19. 19.
    Ma, G., Peng, X., Ma, C., Xu, P.: The biosurfactants and its application. J. Chin. biotechnol. 23(5), 42–45 (2003)Google Scholar
  20. 20.
    NY 1109–2006, 1109 NY1109-2006. General biosafety standard for microbial fertilizers. Beijing, ChinaGoogle Scholar
  21. 21.
    Guo, X., Huang, J., Lu, Y., Shan, G., Li, Q.: The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud. Bioresour. Technol. 219, 169–174 (2016)CrossRefGoogle Scholar
  22. 22.
    Li, Q., Lu, Y., Guo, X., Shan, G., Huang, J.: Properties and evolution of dissolved organic matter during co-composting of dairy manure and Chinese herbal residues. Environ. Sci. Pollut. Res. Int. 24(9), 8629–8636 (2017)CrossRefGoogle Scholar
  23. 23.
    López-González, J.A., Suárez-Estrella, F., Vargas-García, M.C., López, M.J., Jurado, M.M., Moreno, J.: Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour. Technol. 175, 406–416 (2015)CrossRefGoogle Scholar
  24. 24.
    He, L., Bickerstaff, G.F., Paterson, A., Buswell, J.A.: Purification and partial characterization of two xylanases that differ in hydrolysis of soluble and insoluble xylan fractions. Enzyme Microb. Technol. 15(1), 13–18 (1993)CrossRefGoogle Scholar
  25. 25.
    Nakasaki, K., Fujiwara, S., Kubota, H.: A newly isolated thermophilic bacterium, Bacillus licheniformis HA1 to accelerate the organic matter decomposition in high rate composting. Compost Sci. Util. 2(2), 88–96 (1994)CrossRefGoogle Scholar
  26. 26.
    Sung, M.H., Kim, H., Bae, J.W., Rhee, S.K., Jeon, C.O., Kim, K., Park, Y.H.: Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int. J. Syst. Evol. Microbiol. 52(6), 2251–2255 (2002)Google Scholar
  27. 27.
    Kim, B.Y., Lee, S.Y., Weon, H.Y., Kwon, S.W., Go, S.J., Park, Y.K., Fritze, D.: Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int. J. Syst. Evol. Microbiol. 56(3), 663–666 (2006)CrossRefGoogle Scholar
  28. 28.
    López-González, J.A., del Carmen Vargas-García, M., López, M.J., Suárez-Estrella, F., Jurado, M., Moreno, J.: Enzymatic characterization of microbial isolates from lignocellulose waste composting: chronological evolution. J. Environ. Manag. 145, 137–146 (2014)CrossRefGoogle Scholar
  29. 29.
    Ramírez-Godínez, J., Beltrán-Hernández, I., Álvarez-Hernández, A., Coronel-Olivares, C., Contreras-López, E., Quezada-Cruz, M., Vázquez-Rodríguez, G.: Evaluation of natural materials as exogenous carbon sources for biological treatment of low carbon-to-nitrogen waste water. Biomed. Res. Int. (2015).  https://doi.org/10.1155/2015/754785 Google Scholar
  30. 30.
    Liu, Z., Huang, S., Sun, G., Xu, Z., Xu, M.: Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China. Microbio. Res. 166(5), 337–345 (2011)CrossRefGoogle Scholar
  31. 31.
    Jiang, J., Liu, X., Huang, Y., Huang, H.: Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manage. 39, 78–85 (2015)CrossRefGoogle Scholar
  32. 32.
    Gigliotti, G., Kaiser, K., Guggenberger, G., Haumaier, L.: Differences in the chemical composition of dissolved organic matter from waste material of different sources. Biol. Fertil. Soils. 36(5), 321–329 (2002)CrossRefGoogle Scholar
  33. 33.
    Lv, B., Xing, M., Yang, J., Qi, W., Lu, Y.: Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresour. Technol. 132, 320–326 (2013)CrossRefGoogle Scholar
  34. 34.
    Jouraiphy, A., Amir, S., Winterton, P., El Gharous, M., Revel, J.C., Hafidi, M.: Structural study of the fulvic fraction during composting of activated sludge–plant matter: elemental analysis, FTIR and 13 C NMR. Bioresour. Technol. 99(5), 1066–1072 (2008)CrossRefGoogle Scholar
  35. 35.
    He, X., Xi, B., Wei, Z., Guo, X., Li, M., An, D., Liu, H.: Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere. 82(4), 541–548 (2011)CrossRefGoogle Scholar
  36. 36.
    Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100(22), 5444–5453 (2009)CrossRefGoogle Scholar
  37. 37.
    Hsu, J.H., Lo, S.L.: Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environ. Pollut. 104(2), 189–196 (1999)CrossRefGoogle Scholar
  38. 38.
    de Bertoldi, M.D., Vallini, G.E., Pera, A.: The biology of composting: a review. Waste Manag. Res. 1(2), 157–176 (1983)CrossRefGoogle Scholar
  39. 39.
    Droussi, Z., D’orazio, V., Provenzano, M.R., Hafidi, M., Ouatmane, A.: Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 164(2), 1281–1285 (2009)CrossRefGoogle Scholar
  40. 40.
    Zhang, C., Xu, Y., Zhao, M., et al.: Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. J. Hazard. Mater. 344, 163–168 (2018)CrossRefGoogle Scholar
  41. 41.
    Li, R., Wang, J.J., Zhang, Z., et al.: Nutrient transformations during composting of pig manure with bentonite. Bioresour. Technol. 121, 362–368 (2012)CrossRefGoogle Scholar
  42. 42.
    Eklind, Y., Kirchmann, H.: Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresour. Technol. 74(2), 125–133 (2000)CrossRefGoogle Scholar
  43. 43.
    Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Sinicco, T., Mondini, C.: Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products. Chemosphere. 88(2), 196–203 (2012)CrossRefGoogle Scholar
  44. 44.
    Zhang, Y., Zhao, Y., Chen, Y., et al.: A regulating method for reducing nitrogen loss based on enriched ammonia-oxidizing bacteria during composting. Bioresour. Technol. 221, 276–283 (2016)CrossRefGoogle Scholar
  45. 45.
    Raut, M.P., William, S.P., Bhattacharyya, J.K., Chakrabarti, T., Devotta, S.: Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512–6519 (2008)CrossRefGoogle Scholar
  46. 46.
    Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., et al.: Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in thevaluation of compost stability. Chemosphere. 72(4), 551–557 (2008)CrossRefGoogle Scholar
  47. 47.
    Riffaldi, R., Levi-Minzi, R., Pera, A., De Bertoldi, M.: Evaluation of compost maturity by means of chemical and microbial analyses. Waste Manag. Res. 4(4), 387–396 (1986)CrossRefGoogle Scholar
  48. 48.
    Barrington, S., Choinière, D., Trigui, M., Knight, W.: Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 83(3), 189–194 (2002)CrossRefGoogle Scholar
  49. 49.
    Michel, F.C. Jr., Pecchia, J.A., Rigot, J., Keener, H.M.: Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci. Util. 12(4), 323–334 (2004)CrossRefGoogle Scholar
  50. 50.
    Said-Pullicino, D., Erriquens, F.G., Gigliotti, G.: Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98(9), 1822–1831 (2007)CrossRefGoogle Scholar
  51. 51.
    Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37(20), 4702–4708 (2003)CrossRefGoogle Scholar
  52. 52.
    Vinceslas-Akpa, M., Loquet, M.: Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol. Biochem. 29(34), 751–758 (1997)CrossRefGoogle Scholar
  53. 53.
    Caricasole, P., Provenzano, M.R., Hatcher, P.G., Senesi, N.: Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy. Bioresour. Technol. 101(21), 8232–8236 (2010)CrossRefGoogle Scholar
  54. 54.
    N’dayegamiye, A., Isfan, D.: Chemical and biological changes in compost of wood shavings, sawdust and peat moss. Can. J. Soil Sci. 71(4), 475–484 (1991)CrossRefGoogle Scholar
  55. 55.
    García, C., Hernandez, T., Costa, F.: Study on water extract of sewage sludge composts. Soil Sci. Plant Nutr. 37(3), 399–408 (1991)CrossRefGoogle Scholar
  56. 56.
    Chen, Y., Senesi, N., Schnitzer, M.: Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41(2), 352–358 (1977)CrossRefGoogle Scholar
  57. 57.
    Traversa, A., Loffredo, E., Gattullo, C.E., Senesi, N.: Water-extractable organic matter of different composts: a comparative study of properties and allelochemical effects on horticultural plants. Geoderma. 156(3), 287–292 (2010)CrossRefGoogle Scholar
  58. 58.
    Pognani, M., Barrena, R., Font, X., Adani, F., Scaglia, B., Sánchez, A.: Evolution of organic matter in a full-scale composting plant for the treatment of sewage sludge and biowaste by respiration techniques and pyrolysis-GC/MS. Bioresour. Technol. 102(6), 4536–4543 (2011)CrossRefGoogle Scholar
  59. 59.
    Chefetz, B., Hadar, Y., Chen, Y.: Dissolved organic carbon fractions formed during composting of municipal solid waste: properties and significance. Acta Hydrochim. Hydrobiol. 26(3), 172–179 (1998)CrossRefGoogle Scholar
  60. 60.
    Lichtfouse, E., Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Béhar, F., Albrecht, P.: A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence. Org. Geochem. 28(6), 411–415 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jiaqi Xu
    • 1
  • Yanyu Lu
    • 1
  • Guangchun Shan
    • 1
  • Xiao-Song He
    • 2
    • 3
  • Junhao Huang
    • 1
  • Qunliang Li
    • 1
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningPeople’s Republic of China
  2. 2.State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingPeople’s Republic of China
  3. 3.Innovation Base of Ground Water & Environmental System EngineeringChinese Research Academy of Environmental SciencesBeijingPeople’s Republic of China

Personalised recommendations