Valorization of Arid Region Abattoir Animal Waste: Determination of Biomethane Potential

  • Juan-Rodrigo Bastidas-Oyanedel
  • Akinleye Sowunmi
  • Jens Ejbye Schmidt
Original Paper


Abattoir waste methanization has historically focused on cattle, swine and poultry wastes. The main objective of the present work is the determination of biomethane potential of organic wastes from arid-region, i.e. animal dung: camel, sheep, goat, cattle; and mixed blood waste. Biomethane potential was determined for the five untreated wastes. In addition the investigated wastes were thermally pretreatment at 120 °C for 30 min and the biomethane potentials of the pretreated wastes were in addition determined. The thermal pretreatment increased the biomethane potential by 30–150%, achieving a maximum of 442 ml CH4/g VS for the thermally pretreated mixed blood waste. The results highlight the potential of using abattoir wastes in arid-regions for biomethane production. Two mathematical models, Gompertz, and modified Gompertz, were used to analyze the experimental data and determine the maximum biomethane production rate. The analysis showed that the modified Gompertz model is more accurate than the Gompertz model giving at biomethane production rate up to 56 ml CH4/g VS/day.

Graphical Abstract


Abattoir Anaerobic digestion Biomasses arid regions, biomethane potential Pretreatment 



The authors would like to acknowledge the financial support from Masdar Institute of Science and Technology, to help fulfill the vision of the late President Sheikh Zayed Bin Sultan Al Nahyan for sustainable development and empowerment of the United Arab Emirates and humankind, funding project 2GBIONRG (12KAMA4). The authors would also like to acknowledge Al Wathba ISTP2 Wastewater Treatment Plant (Vebes O & M Co.), Al Mina Automated Slaughter House, and Al Shahama Slaughter House.


  1. 1.
    Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., García, M.M.: Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 32, 1821–1825 (2012). CrossRefGoogle Scholar
  2. 2.
    Shin, J., Han, S., Eom, K., Sung, S., Park, S., Kim, H.: Predicting methane production of anaerobic co-digestion of swine manure and food waste. Environ. Eng. Res. 13, 93–97 (2008). CrossRefGoogle Scholar
  3. 3.
    Salminen, E., Rintala, J.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002). CrossRefGoogle Scholar
  4. 4.
    FAO: Coping with Water Scarcity An Action Framework for Agriculture and Food Security. FAO, Rome (2012)Google Scholar
  5. 5.
    WB: Middle East and North Africa.
  6. 6.
    Bastidas-Oyanedel, J.-R., Fang, C., Almardeai, S., Javid, U., Yousuf, A., Schmidt, J.E.: Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 215, 21–28 (2016). CrossRefGoogle Scholar
  7. 7.
    Belasri, D., Sowunmi, A., Bastidas-Oyanedel, J.-R., Amaya, C., Schmidt, J.E.: Prospecting of renewable energy technologies for the emirate of Abu Dhabi: a techno-economic analysis. Prog. Ind. Ecol. (2016). Google Scholar
  8. 8.
    Bonk, F., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manag. 40, 82–91 (2015). CrossRefGoogle Scholar
  9. 9.
    Murphy, J., McKeogh, E.: Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy. 29, 1043–1057 (2004)CrossRefGoogle Scholar
  10. 10.
    Kelleher, B.P., Leahy, J.J., Henihan, aM., O’Dwyer, T.F., Sutton, D., Leahy, M.J.: Advances in poultry litter disposal technology—a review. Bioresour. Technol. 83, 27–36 (2002). CrossRefGoogle Scholar
  11. 11.
    Martens, W., Böhm, R.: Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresour. Technol. 100, 5374–5378 (2009). CrossRefGoogle Scholar
  12. 12.
    Nasir, I.M., Ghazi, T.I.M., Omar, R.: Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl. Microbiol. Biotechnol. 95, 321–329 (2012). CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Banks, C.J.: Evaluation of a two stage anaerobic digester for the treatment of mixed abattoir wastes. Process Biochem. 38, 1267–1273 (2003). CrossRefGoogle Scholar
  14. 14.
    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). CrossRefGoogle Scholar
  15. 15.
    Jensen, P.D., Mehta, C.M., Carney, C., Batstone, D.J.: Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Manag. 51, 72–80 (2016). CrossRefGoogle Scholar
  16. 16.
    Budde, J., Heiermann, M., Suárez Quiñones, T., Plöchl, M.: Effects of thermobarical pretreatment of cattle waste as feedstock for anaerobic digestion. Waste Manag. 34, 522–529 (2014). CrossRefGoogle Scholar
  17. 17.
    Ferreira, L.C., Souza, T.S.O., Fdz-Polanco, F., Pérez-Elvira, S.I.: Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour. Technol. 152, 393–398 (2014). CrossRefGoogle Scholar
  18. 18.
    Li, W., Zhang, G., Zhang, Z., Xu, G.: Anaerobic digestion of yard waste with hydrothermal pretreatment. Appl. Biochem. Biotechnol. 172, 2670–2681 (2014). CrossRefGoogle Scholar
  19. 19.
    Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., Saake, B.: Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. Carbohydr. Polym. 100, 202–210 (2014). CrossRefGoogle Scholar
  20. 20.
    APHA: Standar Methods for the Examination of Water and Wastewater. APHA, New York (1995)Google Scholar
  21. 21.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: NREL/TP-510-42622 Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) (2008)Google Scholar
  22. 22.
    Sluiter, a, Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass (2012)Google Scholar
  23. 23.
    Sluiter, a, Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Nrel, J.W.: NREL/TP-510-42621 Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples (2008)Google Scholar
  24. 24.
    ASTM: ASTM E 1690-01 Standard Test Method for Determination of Ethanol Extractives in Biomass (2002)Google Scholar
  25. 25.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)CrossRefGoogle Scholar
  26. 26.
    Moestedt, J., Muller, B., Westerholm, M., Schnurer, A.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 9, 180–194 (2016). CrossRefGoogle Scholar
  27. 27.
    Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48, 901–911 (2013). CrossRefGoogle Scholar
  28. 28.
    Bastidas-Oyanedel, J.R., Mohd-Zaki, Z., Pratt, S., Steyer, J.P., Batstone, D.J.: Development of membrane inlet mass spectrometry for examination of fermentation processes. Talanta 83, 482–492 (2010)CrossRefGoogle Scholar
  29. 29.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009). CrossRefGoogle Scholar
  30. 30.
    Overend, R.P., Chornet, E.: Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. 321, 523–536 (1987). CrossRefGoogle Scholar
  31. 31.
    Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825). CrossRefGoogle Scholar
  32. 32.
    Gil, M.M., Brandão, T.R.S., Silva, C.L.M.: A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions. J. Food Eng. 76, 89–94 (2006). CrossRefGoogle Scholar
  33. 33.
    Etuwe, C.N., Momoh, Y.O.L., Iyagba, E.T.: Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valoriz. 7, 543–550 (2016). CrossRefGoogle Scholar
  34. 34.
    Ortega-Martinez, E., Zaldivar, C., Phillippi, J., Carrere, H., Donoso-Bravo, A.: Improvement of anaerobic digestion of swine slurry by steam explosion and chemical pretreatment application. Assessment based on kinetic analysis. J. Environ. Chem. Eng. 4, 2033–2039 (2016). CrossRefGoogle Scholar
  35. 35.
    Riggio, S., Torrijos, M., Debord, R., Esposito, G., van Hullebusch, E.D., Steyer, J.P., Escudie, R.: Mesopholic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manag. 59, 129–139 (2016). CrossRefGoogle Scholar
  36. 36.
    Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M.J., Sárvári-Horváth, I., Lundin, M.: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chem. Eng. J. 245, 89–98 (2014). CrossRefGoogle Scholar
  37. 37.
    Afazeli, H., Jafari, A., Rafiee, S., Nosrati, M.: An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew. Sustain. Energy Rev. 34, 380–386 (2014). CrossRefGoogle Scholar
  38. 38.
    Sowunmi, A., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Carbon emissions from livestock manure in Arid Regions—technical study on the United Arab Emirates. Environ. Nat. Resour. Res. 5, 1–10 (2015). Google Scholar
  39. 39.
    Sowunmi, A., Mamone, R.M., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Convers. Biorefinery (2016). Google Scholar
  40. 40.
    Bastidas-Oyanedel, J.-R., Bonk, F., Thomsen, M.H., Schmidt, J.E.: Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev. Environ. Sci. Biotechnol. (2015). Google Scholar
  41. 41.
    Kleerebezem, R., Joosse, B., Rozendal, R., Van Loosdrecht, M.C.M.: Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. (2015). Google Scholar
  42. 42.
    Aceves-Lara, C.A., Trably, E., Bastidas-Oyenadel, J.-R., Ramirez, I., Latrille, E., Steyer, J.-P.: Bioenergy production from waste: examples of biomethane and biohydrogen. J. Soc. Biol. 202, (2008). Google Scholar
  43. 43.
    Sen, B., Aravind, J., Kanmani, P., Lay, C.H.: State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 53, 547–557 (2016). CrossRefGoogle Scholar
  44. 44.
    López, I., Borzacconi, L.: Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation. Waste Manag. 30, 1813–1821 (2010). CrossRefGoogle Scholar
  45. 45.
    Lokshina, L.Y., Vavilin, V.A., Salminen, E., Rintala, J.: Modeling of anaerobic degradation of solid slaughterhouse waste. Appl. Biochem. Biotechnol. 109, 15–32 (2003). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations