Sweet Sorghum Bagasse Pretreatment by Coriolus versicolor in Mesh Tray Bioreactor for Selective Delignification and Improved Saccharification

Original Paper
  • 20 Downloads

Abstract

Fungal pretreatment of sweet sorghum bagasse (SSB) by solid state fermentation (SSF) studied in a Mesh tray bioreactor. In pretreatment by using Coriolus versicolor, optimal mesh size in tray and humid airflow into bioreactor overcame the problems of SSF and improved fungal growth; increased the production of lignolytic enzymes laccase, lignin peroxidase, manganese peroxidase, polyphenol peroxidase, aryl alcohol oxidase by 1.9, 1.85, 2.6, 2.0, 1.9 folds respectively; hemicellulolytic enzyme xylanase by 1.8 folds and decreased cellulolytic enzymes production. Altered lignocellulolytic enzyme profiles resulted in high lignin degradation 46.09 ± 2.0% w w−1, high selectivity value 5.98 and low cellulose loss 7.7 ± 0.3% w w−1. Enzymatic hydrolysis of pretreated SSB yielded higher (~ 2.47 times) fermentable sugar. Characterizations of SSB by SEM, XRD, FTIR, TGA/DTG supported the results. Mesh tray bioreactor could be used for fungal pretreatment and enzyme productions by SSF of waste biomass.

Graphical Abstract

Keywords

Mesh tray bioreactor Sweet sorghum bagasse Fungal pretreatment Lignin degradation Selectivity value 

Notes

Acknowledgements

Mrs. Vartika Mishra gratefully acknowledges Ministry of Human Resource Development (MHRD), Govt. of India for providing the fellowship during the study. All authors are highly thankful to National Institute of Technology (NIT), Jalandhar for providing grants and administrative supports for the study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12649_2018_276_MOESM1_ESM.pdf (147 kb)
Supplementary material 1 (PDF 147 KB)
12649_2018_276_MOESM2_ESM.pdf (220 kb)
Supplementary material 2 (PDF 220 KB)
12649_2018_276_MOESM3_ESM.pdf (147 kb)
Supplementary material 3 (PDF 147 KB)

References

  1. 1.
    Kim, I.J., Lee, H.J., Kim, K.H.: Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods. Process Biochem. 57, 167–174 (2017)CrossRefGoogle Scholar
  2. 2.
    Minmunin, J., Limpitipanich, P., Promwungkwa, A.: Delignification of bana grass using sodium hydroxide and ozone. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0002-2 Google Scholar
  3. 3.
    Madhawan, A., Arora, A., Das, J., Sharma, S., Kuila, A., Sharma, V.: different types of thermochemical pretreatment and optimization of enzymatic hydrolysis of groundnut shell. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0083-y Google Scholar
  4. 4.
    Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Production of microfibrillated cellulose by novel continuous steam explosion assisted chemo-mechanical methods and its characterizations. Waste Biomass Valoriz (2017).  https://doi.org/10.1007/s12649-017-0066-z Google Scholar
  5. 5.
    Li, G., He, W., Yuan, L.: Aqueous ammonia pretreatment of sugar beet pulp for enhanced enzymatic hydrolysis. Bioprocess. Biosyst. Eng. (2017).  https://doi.org/10.1007/s00449-017-1816-9 Google Scholar
  6. 6.
    Da Silva Machado, A., Ferraz, A.: Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour. Technol. 225, 17–22 (2017)CrossRefGoogle Scholar
  7. 7.
    Sindhu, R., Binod, P., Pandey, A.: Biological pretreatment of lignocellulosic biomass—an overview. Bioresour. Technol. 199, 76–82 (2016)CrossRefGoogle Scholar
  8. 8.
    Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0059-y Google Scholar
  9. 9.
    Tuor, U., Winterhalter, K., Fiechter, a: Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41(1), 1–17 (1995).  https://doi.org/10.1016/0168-1656(95)00042-O CrossRefGoogle Scholar
  10. 10.
    García-Torreiro, M., López-Abelairas, M., Lu-Chau, T., Lema, J.: Fungal pretreatment of agricultural residues for bioethanol production. Ind. Crops Prod. 89, 486–492 (2016)CrossRefGoogle Scholar
  11. 11.
    Saha, B.C., Qureshi, N., Kennedy, G.J., Cotta, M.A.: Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int. Biodeterior. Biodegrad. 109, 29–35 (2016)CrossRefGoogle Scholar
  12. 12.
    Bhatnagar, A., Kumar, S., Gomes, J.: Operating conditions of a 200 l staged vertical reactor for bioconversion of wheat straw by Phanerochaete chrysosporium. Bioresour. Technol. 99, 6917–6927 (2008).  https://doi.org/10.1016/j.biortech.2008.01.031 CrossRefGoogle Scholar
  13. 13.
    Gupta, R., Mehta, G., Khasa, Y.P., Kuhad, R.C.: Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation. 22(4), 797–804 (2011).  https://doi.org/10.1007/s10532-010-9404-6 CrossRefGoogle Scholar
  14. 14.
    Kamcharoen, A., Champreda, V., Eurwilaichitr, L., Boonsawang, P.: Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design. Int. J. Energy Environ. Eng. 5, 303–312 (2014).  https://doi.org/10.1007/s40095-014-0136-y CrossRefGoogle Scholar
  15. 15.
    Chang, A.J., Fan, J., Wen, X.: Screening of fungi capable of highly selective degradation of lignin in rice straw. Int. Biodeterior. Biodegrad. 72, 26–30 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Yu, H., Huang, H., Liu, Y.: Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegradation 60(3), 159–164 (2007)CrossRefGoogle Scholar
  17. 17.
    Mishra, V., Jana, A.K.: Fungal pretreatment of sweet sorghum bagasse with combined CuSO4-gallic acid supplement for improvement in lignin degradation, selectivity, and enzymatic saccharification. Appl. Biochem. Biotechnol. (2017).  https://doi.org/10.1007/s12010-017-2439-y Google Scholar
  18. 18.
    Mishra, V., Jana, A.K., Jana, M.M., Gupta, A.: Synergistic effect of syringic acid and gallic acid supplements in fungal pretreatment of sweet sorghum bagasse for improved lignin degradation and enzymatic saccharification. Process Biochem. 55, 116–125 (2017)CrossRefGoogle Scholar
  19. 19.
    Mishra, V., Jana, A.K., Jana, M.M., Gupta, A.: Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour. Technol. 236, 49–59 (2017).  https://doi.org/10.1016/j.biortech.2017.03.148 CrossRefGoogle Scholar
  20. 20.
    Mishra, V., Jana, A.K., Jana, M.M., Gupta, A.: Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 7(2), 110 (2017)CrossRefGoogle Scholar
  21. 21.
    Meehnian, H., Jana, A.K., Jana, M.M.: Pretreatment of cotton stalks by synergistic interaction of Daedalea flavida and Phlebia radiata in co-culture for improvement in delignification and saccharification. Int. Biodeterior. Biodegrad. 117, 68–77 (2017)CrossRefGoogle Scholar
  22. 22.
    Meehnian, H., Jana, A.K.: Cotton stalk pretreatment using Daedalea flavida, Phlebia radiata, and Flavodon flavus: lignin degradation, cellulose recovery, and enzymatic saccharification. Appl. Biochem. Biotechnol. 181, 1–20 (2016)Google Scholar
  23. 23.
    Couto, S.R., Moldes, D., Liébanas, A., Sanromán, A.: Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochem. Eng. J. 15(1), 21–26 (2003)CrossRefGoogle Scholar
  24. 24.
    Couto, S.R., Lopez, E., Sanromán, M.A.: Utilisation of grape seeds for laccase production in solid-state fermentors. J. Food Eng. 74(2), 263–267 (2006)CrossRefGoogle Scholar
  25. 25.
    Archibald, F.S.: A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58(9), 3110–3116 (1992)Google Scholar
  26. 26.
    Bourbonnais, R., Paice, M.G.: Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett. 267(1), 99–102 (1990)CrossRefGoogle Scholar
  27. 27.
    Glenn, J.K., Gold, M.H.: Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242(2), 329–341 (1985)CrossRefGoogle Scholar
  28. 28.
    Wong, T.C., Luh, B.S., Whitaker, J.R.: Isolation and characterization of polyphenol oxidase isozymes of clingstone peach. Plant Physiol. 48(1), 19–23 (1971)CrossRefGoogle Scholar
  29. 29.
    Guillen, F., Martinez, A.T., Martinez, M.J.: Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur. J. Biochem. 209(2), 603–611 (1992)CrossRefGoogle Scholar
  30. 30.
    Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  31. 31.
    Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23(3), 257–270 (1992)CrossRefGoogle Scholar
  32. 32.
    Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. Methods Enzymol. 160, 87–112 (1988)CrossRefGoogle Scholar
  33. 33.
    Aidoo, K.E., Hendry, R., Wood, B.J.B.: Estimation of fungal growth in a solid-state fermentation system. Eur. J. Appl. Microbiol. Biotechnol. 12(1), 6–9 (1981)CrossRefGoogle Scholar
  34. 34.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). In: National Renewable Energy Laboratory. p. NREL/TP 510 42618. Golden, National Renewable Energy Laboratory (2010)Google Scholar
  35. 35.
    Wan, C., Li, Y.: Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101(16), 6398–6403 (2010)CrossRefGoogle Scholar
  36. 36.
    Segal, L., Creely, J., Martin, A., Conrad, C.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)CrossRefGoogle Scholar
  37. 37.
    Dowe, N., McMillan, J.: SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation: laboratory analytical procedure (LAP). In: National Renewable Energy Laboratory (NREL) Analytical Procedures. p. NREL/TP 510 42630. Golden, National Renewable Energy Laboratory (2001)Google Scholar
  38. 38.
    Kim, M., Day, D.F.: Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 38(7), 803–807 (2011)CrossRefGoogle Scholar
  39. 39.
    Mishra, V., Jana, A.K., Jana, M.M., Gupta, A.: Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO4-syringic acid supplements. J. Environ. Manag. 193, 558–566 (2017)CrossRefGoogle Scholar
  40. 40.
    Salvachúa, D., Prieto, A., Vaquero, M.E., Martínez, ÁT., Martínez, M.J.: Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresour. Technol. 131, 218–225 (2013).  https://doi.org/10.1016/j.biortech.2012.11.089 CrossRefGoogle Scholar
  41. 41.
    Reid, I.D.: Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme Microb. Technol. 11(12), 804–809 (1989)CrossRefGoogle Scholar
  42. 42.
    Moilanen, U., Winquist, E., Mattila, T., Hatakka, A., Eerikäinen, T.: Production of manganese peroxidase and laccase in a solid-state bioreactor and modeling of enzyme production kinetics. Bioprocess Biosyst. Eng. 38(1), 57–68 (2015)CrossRefGoogle Scholar
  43. 43.
    Tian, X.F., Fang, Z., Guo, F.: Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod. Biorefin. (2012).  https://doi.org/10.1002/bbb.346 Google Scholar
  44. 44.
    Wan, C., Li, Y.: Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 30(6), 1447–1457 (2012)CrossRefGoogle Scholar
  45. 45.
    Singhania, R.R., Patel, A.K., Soccol, C.R., Pandey, A.: Recent advances in solid-state fermentation. Biochem. Eng. J. 44(1), 13–18 (2009)CrossRefGoogle Scholar
  46. 46.
    Raghavarao, K., Ranganathan, T., Karanth, N.: Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 13(2–3), 127–135 (2003)CrossRefGoogle Scholar
  47. 47.
    Oostra, J., Le Comte, E., Van den Heuvel, J., Tramper, J., Rinzema, A.: Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol. Bioeng. 75(1), 13–24 (2001)CrossRefGoogle Scholar
  48. 48.
    Sun, F., Li, J., Yuan, Y., Yan, Z., Liu, X.: Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. Int. Biodeterior. Biodegrad. 65(7), 931–938 (2011)CrossRefGoogle Scholar
  49. 49.
    Bari, E., Nazarnezhad, N., Kazemi, S.M., Ghanbary, M.A.T., Mohebby, B., Schmidt, O., Clausen, C.A.: Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. Int. Biodeterior. Biodegrad. 104, 231–237 (2015)CrossRefGoogle Scholar
  50. 50.
    Vasco-Correa, J., Ge, X., Li, Y.: Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour. Technol. 203, 118–123 (2016)CrossRefGoogle Scholar
  51. 51.
    Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, ÁT., Martínez, M.J.: Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour. Technol. 102(16), 7500–7506 (2011).  https://doi.org/10.1016/j.biortech.2011.05.027 CrossRefGoogle Scholar
  52. 52.
    Sharma, R.K., Arora, D.S.: Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess Biosyst. Eng. 37(7), 1437–1445 (2014)CrossRefGoogle Scholar
  53. 53.
    Mustafa, A.M., Poulsen, T.G., Sheng, K.: Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 180, 661–671 (2016)CrossRefGoogle Scholar
  54. 54.
    Bar-Lev, S., Kirk, T.: Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 99(2), 373–378 (1981)CrossRefGoogle Scholar
  55. 55.
    Sun, S.L., Wen, J.L., Ma, M.G., Li, M.F., Sun, R.C.: Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. J. Agric. Food Chem. 61(18), 4226–4235 (2013).  https://doi.org/10.1021/jf400824p CrossRefGoogle Scholar
  56. 56.
    Wong, D.W.S.: Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157, 174–209 (2009).  https://doi.org/10.1007/s12010-008-8279-z CrossRefGoogle Scholar
  57. 57.
    Hatakka, A., Hammel, K.: Fungal biodegradation of lignocelluloses. In: Hofrichter, M. (ed.) The Mycota; Industrial Applications, vol. 10. pp. 319–340. Springer, Heidelberg (2010)Google Scholar
  58. 58.
    Rosales, E., Couto, S.R., Sanromán, M.A.: Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme Microb. Technol. 40(5), 1286–1290 (2007)CrossRefGoogle Scholar
  59. 59.
    Rodríguez Couto, S., Rivela, I., Sanromán, A.: Design of different bioreactor configurations: application to ligninolytic enzyme production in semi-solid-state cultivation. J. Chem. Technol. Biotechnol. 76(1), 78–82 (2001)CrossRefGoogle Scholar
  60. 60.
    Zhang, L., You, T., Zhou, T., Zhang, L., Xu, F.: Synergistic effect of white-rot fungi and alkaline pretreatments for improving enzymatic hydrolysis of poplar wood. Ind. Crops Prod. 86, 155–162 (2016)CrossRefGoogle Scholar
  61. 61.
    Zeng, J., Singh, D., Chen, S.: Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresour. Technol. 102(3), 3206–3214 (2011).  https://doi.org/10.1016/j.biortech.2010.11.008 CrossRefGoogle Scholar
  62. 62.
    Dong, X.Q., Yang, J.S., Zhu, N., Wang, E.T., Yuan, H.L.: Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour. Technol. 131, 443–451 (2013).  https://doi.org/10.1016/j.biortech.2012.12.182 CrossRefGoogle Scholar
  63. 63.
    Tiwari, R., Rana, S., Singh, S., Arora, A., Kaushik, R., Agrawal, V.V., Saxena, A.K., Nain, L.: Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresour. Technol. 135, 7–11 (2013).  https://doi.org/10.1016/j.biortech.2012.12.079 CrossRefGoogle Scholar
  64. 64.
    Martín-Sampedro, R., Fillat, Ú, Ibarra, D., Eugenio, M.E.: Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresour. Technol. 196, 383–390 (2015)CrossRefGoogle Scholar
  65. 65.
    Dhiman, S.S., Haw, J.-R., Kalyani, D., Kalia, V.C., Kang, Y.C., Lee, J.-K.: Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179, 50–57 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyDr B R A National Institute of TechnologyJalandharIndia

Personalised recommendations