Chamomile Wastes (Matricaria chamomilla): New Source of Polysaccharides

  • Anton SlavovEmail author
  • Nikoleta Yantcheva
  • Ivelina Vasileva
Original paper



The chamomile (Matricaria chamomilla) is widely used as essential oil crop. Low amounts of oils in the plants lead to annual generation of significant wastes which are mainly discarded. The purpose of this study was to investigate chamomile wastes as source of polysaccharides as novel approach for valorization of chamomile waste biomass.


Three wastes—generated by industrial steam distillation, hydrodistillation and extraction with 1,1,1,2-tetrafluoroethane of chamomile flowers, were investigated. The potential of wastes as source of polysaccharides was estimated by initial diluted acid extraction. Consecutive fractional extraction of the wastes with different extractants was performed in order to obtain information about the overall polysaccharides content and polysaccharide fractions present in the wastes.


Different fractions of polysaccharides present in the chamomile wastes were extracted for the first time by consecutive fractional extraction. Their chemical composition and properties were investigated and was found that they were pectic type polysaccharides. The polysaccharides were subjected to differential thermal analysis and it was found that they start to decompose significantly after 230–240 °C.


The present study explored the possibility for obtaining of polysaccharides by fractional extraction of chamomile wastes. For the first time also waste from extraction with 1,1,1,2-tetrafluoroethane of chamomile flowers was investigated. The overall yield of polysaccharides from steam-distilled, hydrodistilled wastes and residues after extraction with 1,1,1,2-tetrafluoroethane—11.66, 9.87 and 22.56%, respectively, suggested that waste chamomile biomass was a rich source of pectic type polysaccharides.

Graphical Abstract


Matricaria chamomilla Waste valorization Fractional extraction Polysaccharides Pectins 



The present investigation was financially supported by the project 6/15-H (University of food technologies – Plovdiv, Bulgaria).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sharafzadeh, S., Alizadeh, O.: German and Roman chamomile. J. Appl. Pharm. Sci. 01(10), 01–05 (2011)Google Scholar
  2. 2.
    Inoue, M., Craker, L.E.: Medicinal and aromatic plants—uses and functions. In: Dixon, G.R., Aldous, D.E. (eds.) Horticulture: Plants for People and Places, vol. 2, pp. 645–669. Springer, Dordrecht (2014)Google Scholar
  3. 3.
    Lubbe, A., Verpoorte, R.: Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crop. Prod. 34, 785–801 (2011)CrossRefGoogle Scholar
  4. 4.
    Astin, J.A., Pelletier, K.R., Marie, A., Haskell, W.L.: Complementary and alternative medicine use among elderly persons: one year analysis of Blue Shield medicare supplement. J Gerontol. 55, M4–M9 (2000)CrossRefGoogle Scholar
  5. 5.
    Srivastava, J.K., Shankar, E., Gupta, S.: Chamomile: a herbal medicine of the past with a bright future (review). Mol. Med. Rep. 3, 895–901 (2010)Google Scholar
  6. 6.
    Abdoul-Latif, F.M., Mohamed, N., Edou, P., Ali, A.A., Djama, S.O., Obame, L., Bassolé, I.H.N., Dicko, M.H.: Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. J. Med. Plant Res. 5, 1512–1517 (2011)Google Scholar
  7. 7.
    Harbourne, N., Jacquier, J.C., O’Riordan, D.: Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 115, 15–19 (2009)CrossRefGoogle Scholar
  8. 8.
    Lassányi, Z.: Histochemical study of pectin and hemicellulose of the glandular hair of camomile. Acta Pharmaceut. Hung. 47(4), 186–189 (1977)Google Scholar
  9. 9.
    Kocurik, S., Gianits, L.: Saccharides of the flowers of camomile (Matricaria chamomilla L.). II. Water-soluble polysaccharide. Farmaceut. Obz. 48(3), 111–118 (1979)Google Scholar
  10. 10.
    Laskova, I., Uteshev, B.: Immunomodulating action of heteropolysaccharides isolated from camomile flower clusters. Antibiot. Khimioterapiia 37(6), 15–18 (1992)Google Scholar
  11. 11.
    Bijak, M., Saluk, J., Tsirigotis-Maniecka, M., Komorowska, H., Wachowicz, B., Zaczyńska, E., Czarny, A., Czechowski, F., Nowak, P., Pawlaczyk, I.: The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity. Int. J. Biol. Macromol. 61, 218–229 (2013)CrossRefGoogle Scholar
  12. 12.
    Kolodziejczyk-Czepasa, J., Bijaka, M., Saluka, J., Ponczeka, M.B., Zbikowska, H.M., Nowak, P., Tsirigotis-Maniecka, M., Pawlaczyk, I.: Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic–polysaccharide conjugates. Int. J. Biol. Macromol. 72, 1152–1158 (2015)CrossRefGoogle Scholar
  13. 13.
    Singh, O., Khanam, Z., Misra, N., Srivastava, M.K.: Chamomile (Matricaria chamomilla L.): an overview. Pharmacogn. Rev. 5(9), 82–96 (2011)CrossRefGoogle Scholar
  14. 14.
    Falzari, L.M., Menary, R.C.: Chamomile for Oil and Dried Flowers; Publication No. 02/156 (Project No. UT-28A). Rural Industries Research and Development Corporation, Canbera (2003)Google Scholar
  15. 15.
    Kalra, A., Kumar, S., Katiyar, N., Bahl, J.R., Bansal, R.P., Chauhan, H.S., Prasad, A., Pandey, R., Dhawan, O.P., Krishna, A., Srivastava, R.: Method for the faster multiplication of earthworms, and production of vermicompost from the distillation waste of industrial aromatic crops. US 6488733 B2 (2002)Google Scholar
  16. 16.
    Pandey, R., Kalra, A.: Inhibitory effects of vermicompost produced from agro-waste of medicinal and aromatic plants on egg hatching in Meloidogyne incognita (Kofoid and White) chitwood. Curr. Sci. 98(6), 833–835 (2010)Google Scholar
  17. 17.
    Slavov, A., Panchev, I., Kovacheva, D., Vasileva, I.: Physico-chemical characterization of water-soluble pectic extracts from Rosa damascena, Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocoll. 61, 469–476 (2016)CrossRefGoogle Scholar
  18. 18.
    Nenov, N.: Extraction of plants using liquefied gases Part 1. Laboratory equipment. Sci. Works Univ. Food Technol. 53(2), 195–200 (2005) (In Bulgarian)Google Scholar
  19. 19.
    Kratchanova, M., Gocheva, M., Pavlova, E., Yanakieva, I., Nedelcheva, D., Kussovski, V., Slavov, A.: Characteristics of pectic polysaccharides from leek obtained through consecutive extraction with various reaction agents. Bulg. Chem. Commun. 40(4), 561–567 (2008)Google Scholar
  20. 20.
    Blumenkrantz, N., Asboe-Hansen, G.: New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973)CrossRefGoogle Scholar
  21. 21.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  22. 22.
    Slavov, A., Crépeau, M.J., Durand, S., Garnier, C., Thibault, J.F., Bonnin, E.: Behavior of pectin methylesterases in pectic gels. In: Schols, H.A., Visser, R.G.F., Voragen, A.G.J. (eds.) Pectins and Pectinases, pp. 127–135. Wageningen Academic Publishers, Wageningen (2009)Google Scholar
  23. 23.
    Kratchanova, M., Slavov, A., Kratchanov, C.: Interaction of pectin with amino acids and other amino compounds in aqueous solution. Food Hydrocoll. 18, 677–683 (2004)CrossRefGoogle Scholar
  24. 24.
    Yantcheva, N., Markova, D., Murdzheva, D., Vasileva, I., Slavov, A.: Foaming and emulsifying properties of pectin isolated from different plant materials. Acta Sci. Nat. 3(1), 7–12 (2016)Google Scholar
  25. 25.
    Lever, M.: A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47, 273–279 (1972)CrossRefGoogle Scholar
  26. 26.
    Shikov, V., Kammerer, D., Mihalev, K., Mollov, P., Carle, R.: Antioxidant capacity and colour stability of texture-improved canned strawberries as affected by the addition of rose (Rosa damascena Mill.) petal extracts. Food Res. Int. 46(2), 552–556 (2012)CrossRefGoogle Scholar
  27. 27.
    May, C.D.: Industrial pectins: sources, production and application. Carbohydr. Polym. 12, 79–99 (1990)CrossRefGoogle Scholar
  28. 28.
    Fissore, E.N., Rojas, A.M., Gerschenson, L.N., Williams, P.A.: Butternut and beetroot pectins: characterization and functional properties. Food Hydrocoll. 31, 172–182 (2013)CrossRefGoogle Scholar
  29. 29.
    Siew, C.K., Williams, P.A.: Role of protein and ferulic acid in the emulsification properties of sugar beet pectin. J. Agr. Food Chem. 56, 4164–4171 (2008)CrossRefGoogle Scholar
  30. 30.
    Damodaran, S.: Protein stabilization of emulsions and foams. J. Food Sci. 70, R54–R66 (2005)CrossRefGoogle Scholar
  31. 31.
    Dickinson, E.: Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 23, 1473–1482 (2009)CrossRefGoogle Scholar
  32. 32.
    Slavov, A., Kratchanov, C.: Physico-chemical characterization of N-amidated pectins. Sci. Works PU”Paisii Hilendarski” (Plovdiv). 33(5), 49–53 (2005)Google Scholar
  33. 33.
    Ralet, M.C., Thibault, J.F.: Hydrodynamic properties of isolated pectin domains: a way to figure out pectin macromolecular structure. In: Schols, H.A., Visser, R.G.F., Voragen, A.G.J. (eds.) Pectins and Pectinases, pp. 35–48. Wageningen Academic Publishers, Wageningen (2009)Google Scholar
  34. 34.
    Appelqvist, I.A.M., Cooke, D., Gidley, M.J., Lane, S.J.: Thermal properties of polysaccharides at low moisture: 1-an endothermic melting process and water-carbohydrate interactions. Carbohydr. Polym. 20, 291–299 (1993)CrossRefGoogle Scholar
  35. 35.
    Einhorn-Stoll, U., Kunzek, H., Dongowski, G.: Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll. 21, 1101–1112 (2007)CrossRefGoogle Scholar
  36. 36.
    Godeck, R., Kunzek, H., Kabbert, R.: Thermal analysis of plant cell wall materials depending on the chemical structure and pre-treatment prior to drying. Eur. Food Res. Technol. 213, 395–404 (2001)CrossRefGoogle Scholar
  37. 37.
    Einhorn-Stoll, U., Kunzek, H.: Thermoanalytical characterisation of processing-dependent structural changes and state transitions of citrus pectin. Food Hydrocoll. 23, 40–52 (2009)CrossRefGoogle Scholar
  38. 38.
    Synytsya, A., Čopíková, J., Matějka, P., Machovič, V.: Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 54, 97–106 (2003)CrossRefGoogle Scholar
  39. 39.
    Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., Ebringerová, E.: FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43, 195–203 (2000)CrossRefGoogle Scholar
  40. 40.
    Voragen, A.G.J., Pilnik, W., Thibault, J.F., Axelos, M.A.V., Renard, C.M.G.C.: Pectins. In: Stephen, A.M. (ed.) Food Polysaccharides and Their Applications, pp. 287–339. Marcel Dekker, New York (1995)Google Scholar
  41. 41.
    Bjergegaard, C., Gulewicz, K., Horbowicz, M., Jones, A., Kadlec, P., Kintia, P., Kratchanov, C., Kratchanova, M., Lewandowicz, G., Soral-Smietana, M., Sorensen, H., Urban, J.: Carbohydrate chemistry. In: Hedley, C.L. (ed.) Carbohydrates in Grain Legumes, pp. 15–59. CABI Publishing, Wallingford (2001)Google Scholar
  42. 42.
    Duman, F., Ocsoy, I., Kup, F.O.: Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 60, 333–338 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Technological FacultyUniversity of Food TechnologiesPlovdivBulgaria

Personalised recommendations