Production of 5-HMF from Cellulosic Biomass: Experimental Results and Integrated Process Simulation

  • M. A. Kougioumtzis
  • A. Marianou
  • K. Atsonios
  • C. Michailof
  • N. Nikolopoulos
  • N. Koukouzas
  • K. Triantafyllidis
  • A. Lappas
  • E. Kakaras
Original Paper


5-Hydroxymethylfurfural (5-HMF) is one of the most promising biomass derived platform chemicals. It can be synthesized from biomass carbohydrates, mainly glucose and fructose, via dehydration under acidic conditions. The reaction may be performed either in water, ionic liquids or organic solvents, in particular polar aprotic solvents. In this work, the process modelling of a two-step synthesis of 5-HMF from biomass is presented. Starting from hemicellulose-free biomass, the first step includes the hydrolysis of cellulose towards glucose in the presence of H2SO4 as catalyst, while in a second step glucose is dehydrated to 5-HMF with the aid of Sn20/γ-Αl2O3 catalyst. Hydrolysis is performed in aqueous medium, while dehydration of glucose is taking place in a DMSO/H2O mixture. The overall production of 5-HMF is modelled via the chemical process optimization software ASPEN PLUS™. The optimized process is scaled up at an industrial scale where the heat integration, mass and energy balance calculations are performed.


5-HMF Lignocellulosic biomass Process modelling Heterogeneous catalysis 



Coefficient of performance


Cooling water




Dimethyl sulfoxide




Higher heating value




Natural gas


Pressure swing adsorption


Steam turbine



List of symbols

Mass flow (kg/s)


Pressure (abr)


Temperature (°C)


Heat load (MWth)


Power load (MWe)


Heating value (MJ/kg)



The research leading to this publication has received funding from the European Union Seventh Framework Programme (FP7/SME 2012), under grant agreement no 298619, ECOLASTANE (A novel technology for producing bio-based synthetic textile fibres from biomass-derived furanic monomers).

Supplementary material

12649_2018_267_MOESM1_ESM.docx (307 kb)
Supplementary material 1 (DOCX 307 KB)


  1. 1.
    Gazellot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538–1558 (2012)CrossRefGoogle Scholar
  2. 2.
    Van Putten, R.J., et al.: Hydroxymetylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013)CrossRefGoogle Scholar
  3. 3.
    Wang, T., Nolte, M.W., Shanks, B.H.: Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 16, 548–572 (2014)CrossRefGoogle Scholar
  4. 4.
    Tong, X., Ma, Y., Ll, Y.: Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A 385, 1–13 (2010)CrossRefGoogle Scholar
  5. 5.
    Jarvis, M.: Cellulose stacks up. Nature. 426, 611–612 (2003)CrossRefGoogle Scholar
  6. 6.
    Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)CrossRefGoogle Scholar
  7. 7.
    Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315, 804–807 (2007)CrossRefGoogle Scholar
  8. 8.
    Dutta, S., Wu, K.C.-W.: Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. 11, 4615–4626 (2014)CrossRefGoogle Scholar
  9. 9.
    Lee, Y.-C., Chen, C.-T., Chiu, Y.-T., Wu, K.C.-W.: An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5, 2153–2157 (2013)CrossRefGoogle Scholar
  10. 10.
    Lee, Y.-C., Dutta, S., Wu, K.C.-W.: Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7, 3241–3246 (2014)CrossRefGoogle Scholar
  11. 11.
    Lozano, P., Bernal, B., Bernal, J.M., Pucheault, M., Vaultier, M.: Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chem. 13, 1406–1410 (2011)CrossRefGoogle Scholar
  12. 12.
    Grande, P.M., Domínguez de María, P.: Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater. Bioresour. Technol. 104, 799–802 (2012)CrossRefGoogle Scholar
  13. 13.
    Camacho, F., Gonzalez-Tello, P., Jurado, E., Robles, A.R.: Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J. Chem. Technol. Biotechnol. 67, 350–356 (1996)CrossRefGoogle Scholar
  14. 14.
    Jeong, G.-T., Ra, C.H., Hong, Y.-K., Kim, J.K., Kong, I.-S., Kim, S.-K., Park, D.-H.: Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess. Biosyst. Eng. 38, 207–217 (2015)CrossRefGoogle Scholar
  15. 15.
    Shuai, L., Pan, X.: Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ. Sci. 5, 6889–6894 (2012)CrossRefGoogle Scholar
  16. 16.
    Lanzafame, P., Temi, D.M., Perathoner, S., Spadaro, A.N., Centi, G.: Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts. Catal. Today 179, 178–184 (2012)CrossRefGoogle Scholar
  17. 17.
    Rinaldi, R., Palkovits, R., Schuts, F.: Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. 47, 8047 – 8050 (2008)CrossRefGoogle Scholar
  18. 18.
    Gliozzia, G., Innorta, A., Mancini, A., Bortoloc, R., Perego, C., Ricci, M., Cavania, F.: Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust. Appl. Catal. B 145, 24–33 (2014)CrossRefGoogle Scholar
  19. 19.
    Kuo, I.-J., Suzuki, N., Yamauchib, Y., Wu, K.C.-W.: Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Advantages. 3, 2028–2034 (2013)CrossRefGoogle Scholar
  20. 20.
    Ogasawara, Y., Itagaki, S., Yamaguchi, K., Mizuno, N.: Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. ChemSusChem 4, 519–525 (2011)CrossRefGoogle Scholar
  21. 21.
    Shimizu, K., Furukawa, H., Kobayashi, N., Itaya, Y., Satsuma, A.: Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem. 11, 1627–1632 (2009)CrossRefGoogle Scholar
  22. 22.
    Cheng, M., Shi, T., Guan, H., Wang, S., Wang, X., Jiang, Z.: Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst. Appl. Catal. B 107, 104–109 (2011)CrossRefGoogle Scholar
  23. 23.
    Cai, H., Li, C., Wang, A., Xu, G., Zhang, T.: Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl. Catal. B 123–124, 33–338 (2012)Google Scholar
  24. 24.
    Onda, A., Ochi, T., Yanagisaw, K.: Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10, 1033–1037 (2008)CrossRefGoogle Scholar
  25. 25.
    Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C.J., Goderis, B., Jacobs, P.A., Sels, B.F.: Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 12, 1560–1563 (2010)CrossRefGoogle Scholar
  26. 26.
    Morales-delaRosa, S., Campos-Martin, J.M., Fierro, J.L.G.: Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts. Catal. Today 302, 87–93 (2018)CrossRefGoogle Scholar
  27. 27.
    Kobayashi, H., Komanoya, T., Hara, K., Fukuoka, A.: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3, 440–443 (2010)CrossRefGoogle Scholar
  28. 28.
    Almohalla, M., Rodríguez-Ramos, I., Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R., Guerrero-Ruiz, A.: Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catal. Today 301, 65–71 (2018)CrossRefGoogle Scholar
  29. 29.
    Zhang, C., Fu, Z., Dai, B., Zen, S., Liu, Y., Xu, Q., Kirk, S.R., Yin, D.: Biochar sulfonic acid immobilized chlorozincate ionic liquid: an efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation. Cellulose 21, 1227–1237 (2014)CrossRefGoogle Scholar
  30. 30.
    Amarasekara, A.S., Owereh, O.S.: Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun. 11, 1072–1075 (2010)CrossRefGoogle Scholar
  31. 31.
    Pang, J., Wang, A., Zhenga, M., Zhang, T.: Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem. Commun. 46, 6935–6937 (2010)CrossRefGoogle Scholar
  32. 32.
    Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M.: Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J. Am. Chem. Soc. 130, 12787–12793 (2008)CrossRefGoogle Scholar
  33. 33.
    Lai, D., Deng, L., Li, J., Liao, B., Guo, Q., Fu, Y.: Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem 4, 55–58 (2011)CrossRefGoogle Scholar
  34. 34.
    Xu, S., Liao, M.-C., Zeng, H.-Y., Chen, C.-R., Duan, H.-Z., Liu, X.-J., Du, J.-Z.: Magnetic hydrotalcites as solid basic catalysts for cellulose hydrolysis. Appl. Clay Sci. 115, 124–131 (2015)CrossRefGoogle Scholar
  35. 35.
    Torget, R.W., Kim, J.S., Lee, Y.Y.: Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind. Eng. Chem. Res. 39, 2817–2825 (2000)CrossRefGoogle Scholar
  36. 36.
    Mukherjee, A., Dumont, M.-J., Raghavan, R.: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72, 143–183 (2015)CrossRefGoogle Scholar
  37. 37.
    Han, B., Zhao, P., He, R., Wu, T., Wu, Y.: Catalytic conversion of glucose to 5-hydroxymethyfurfural over B2O3 supported solid acids catalysts. Waste Biomass Valoriz. (2017). Google Scholar
  38. 38.
    He, R., Huang, X., Zhao, P., Han, B., Wu, T., Wu, Y.: The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium–zirconium dioxide. Waste Biomass Valoriz. (2017). Google Scholar
  39. 39.
    Amarasekara, A.S., Razzaq, A.: Mechanism of 1-(1-propylsulfonic)-3-methylimidazolium chloride catalyzed transformation of D-glucose to 5-hydroxymethylfurfural in DMSO: an NMR study. Carbohydr. Res. 386, 86–91 (2014)CrossRefGoogle Scholar
  40. 40.
    Saha, B., Abu-Omar, M.M.: Advances in 5-hydroxymethylfurfural production from biomass in biphasic systems. Green Chem. 16, 24–38 (2014)CrossRefGoogle Scholar
  41. 41.
    Hu, L., et al.: Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem. Eng. J. 244, 137–144 (2014)CrossRefGoogle Scholar
  42. 42.
    Despax, S., et al.: Fast and efficient DMSO-mediated dehydration of carbohydrates into 5-hydroxymethylfurfural. Catal. Commun. 51, 5–9 (2014)CrossRefGoogle Scholar
  43. 43.
    Amarasekara, A.S., Williams, L.T.D., Ebede, C.C.: Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150°C: an NMR study. Carbohyd. Res. 343, 3021–3024 (2008)CrossRefGoogle Scholar
  44. 44.
    Mittal, V.: Renewable Polymers Synthesis, Processing, and Technology. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  45. 45.
    King, Z.D.: Aspen simulation of furfural and hydroxymethylfurfural production from biomass. Dissertation, Missouri University of Science and Technology (2014)Google Scholar
  46. 46.
    Montastruc, L., Ajao O., Marinova, M., Do Carmo, C.B., Domenech, S.: Hemicellulose biorefinery for furfural production: energy requirement analysis and minimization. J. Sci. Technol. For. Prod. Process. 1, 48–52 (2011)Google Scholar
  47. 47.
    Marcotullio, G.: The chemistry and technology of furfural production in modern lignocellulose-feedstock biorefineries. Dissertation, Delft University of Technology (2011)Google Scholar
  48. 48.
    Agirrezabal-Telleria, I., Gandarias, I., Arias, P.L.: Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Biores. Technol. 143, 258–264 (2013). CrossRefGoogle Scholar
  49. 49.
    Patel, A.D.: Techno-Economic Analysis of Di-butyl ketone, Dimethyl furan and Hydroxymethyl furfural Production from Biomass Based Resources. Iowa State University, Ames (2009)Google Scholar
  50. 50.
    Kazi, F.K., Patel, A.D., Serrano-Ruiz, J.C., Dumesic, J.A., Anex, R.P.: Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 169(1–3), 329–338 (2011). CrossRefGoogle Scholar
  51. 51.
    Martína, M., Grossmann, I.E.: Optimal production of furfural and DMF from algae and switchgrass. Ind. Eng. Chem. 55, 3192–3202 (2015)CrossRefGoogle Scholar
  52. 52.
    Abuschinow, M., Hussain, D., Wu, K.: Hydrogenation of maleic acid to tetrahydrofuran. In: Commons, S. (ed.). University of Pennsylvania (2009)Google Scholar
  53. 53.
    Marianou, A.A., Michailof, C.M., Pineda, A., Iliopoulou, E.F., Triantafyllidis, K.S., Lappas, A.A.: Effect of Lewis and BrØnsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl. Catal. A 555, 75–87 (2017)CrossRefGoogle Scholar
  54. 54.
    Kougioumtzis, M.A., Atsonios, K., Nikolopoulos, N., Koukouzas, N.: Large scale production of biomass-derived furanic monomers for textile fibres synthesis: Process modeling and techno-economic evaluation Paper presented at the ECOLASTANE Workshop, Lyon, France, Feb 2016Google Scholar
  55. 55.
    AspenTech: Aspen Plus v8.8Google Scholar
  56. 56.
    Schulze, M.: Experimental study about the influence of protein in seaweed on furfural production and design of a seaweed-based biorefinery concept. Delft University of Technology (2015)Google Scholar
  57. 57.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., Lukas, J.: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. In. vol. NREL/TP-510-32438. National Renewable Energy Laboratory, Golden (2002)Google Scholar
  58. 58.
    Ma, S.: Process design of a BIO refinery for furfural production from lignocellulosic material. In: Department, P.E. (ed.) Pdeng Report. Delft University of Technology, (2006)Google Scholar
  59. 59.
    Eerhart, A.J.J.E., Huijgen, W.J.J., Grisel, R.J.H., van der Waal, J.C., de Jong, E., de Sousa Dias, A., Faaij, A.P.C., Patel, M.K.: Fuels and plastics from lignocellulosic biomass via the furan pathway; a technical analysis. RSC Adv 4, 3536–3549 (2014)CrossRefGoogle Scholar
  60. 60.
    Agirrezabal-Telleria, I., Gandarias, I., Arias, P.L.: Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal. Today 234, 42–58 (2014)CrossRefGoogle Scholar
  61. 61.
    Qian, X., Liu, D.: Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent. Carbohydr. Res. 388, 50–60 (2014)CrossRefGoogle Scholar
  62. 62.
    Choudhary, H., Nishimura, S., Ebitani, K.: Synthesis of high-value organic acids from sugars promoted by hydrothermally loaded Cu oxide species on magnesia. Appl. Catal. B 162, 1–10 (2015)CrossRefGoogle Scholar
  63. 63.
    Caratzoulas, S., Davis, M.E., Gorte, R.J., Gounder, R., Lobo, R.F., Nikolakis, V., Sandler, S.I., Snyder, M.A., Tsapatsis, M., Vlachos, D.G.: Challenges of and insights into acid-catalyzed transformations of sugars. J. Phys. Chem. C 118(40), 22815–22833 (2014)CrossRefGoogle Scholar
  64. 64.
    Yu, I.K.M., Tsang, D.C.W., Yip, A.C.K., Chen, S.S., Ok, Y.S., Poon, C.S.: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresour. Technol. 219, 338–347 (2016)CrossRefGoogle Scholar
  65. 65.
    Tian, G.X., Tong, Y., Cheng, S., Xue: Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydr. Res. 370, 33–37 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Process and Energy Resources InstituteCentre for Research and Technology HellasThermiGreece
  2. 2.Laboratory of Steam Boilers and Thermal PlantsNational Technical University of AthensAthensGreece
  3. 3.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations