Skip to main content
Log in

Production of Xylooligosaccharides from Sugarcane Bagasse and Evaluation of Their Prebiotic Potency In Vitro

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The purpose of study was utilization of sugarcane bagasse, waste product of sugarcane industry, for production of xylooligosaccharides (XOS) and their evaluation of their prebiotic potential.

Methods

The XOS production was carried out in two steps: alkaline extraction of xylan (5, 10 and 15%KOH and NaOH) followed by acid hydrolysis (0.25 and 0.50M H2SO4; 20, 40 and 60 min) of xylan, and quantified using high performance thin layer chromatography (HPTLC). The prebiotic potency of XOS was evaluated for probiotics viz. Lactobacillus brevis, Lactobacillus acidophilus and Lactobacillus viridescens in comparison to standard fructooligosaccharides (FOS).

Results

The chemical compositional analysis indicated that bagasse contain 28.42% hemicellulose out of which 21.46% was estimated to be xylan. Maximum yield of xylan (20.5%) was obtained with 15%NaOH treatment. The best treatments for xylan hydrolysis were found to be 0.25M H2SO4 for 20 and 40 min with concentrations of xylose, xylobiose and xylotriose to be 2.014, 2.106 and 1.228 mg ml− 1, respectively, in 20 min hydrolysis and 2.138, 1.502 and 0.824 mg ml− 1, respectively, in 40 min hydrolysis. XOS were found to be better prebiotics than standard FOS. Pure xylobiose was found to have highest positive effect on growth of all three bacteria tested indicating that effects of XOS were due to presence of xylobiose, xylotriose and XOS with higher degree of polymerization in xylan hydrolysates.

Conclusions

Sugarcane bagasse xylan can be converted into XOS only by controlled acid hydrolysis leading to increased production of XOS which can be used as good prebiotics in drugs and food ingredients after their purification eliminating all the acidic and alkaline residues and also side products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gibson, G.R., Roberfroid, M.B.: Dietary modulation of the human colonic microbiota: introducing the concept of Prebiotics. J. Nutr. 125, 1401–1412 (1995)

    Article  Google Scholar 

  2. Menezes, C.R., Silva, I.S., Pavarina, E.C., Bosscher, A.D., Loo-Van, J., Franck, A.: Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 19, 216 (2006)

    Article  Google Scholar 

  3. Kaur, N., Gupta, A.K.: Applications of inulin and oligofructose in health and nutrition. J. Biosci. 27, 703–714 (2002)

    Article  Google Scholar 

  4. Losada, M.A., Olleros, T.: Towards a healthier diet for the colon: the influence of fructooligosaccharides and Lactobacilli on intestinal health. Nutri. Res. 22, 1–84 (2002)

    Article  Google Scholar 

  5. Silva, L.P., Nornberg, J.L.: Prebiotics in the nutrition of ruminants. Cienc. Rural. 33, 983–990 (2003)

    Article  Google Scholar 

  6. Stowell, J.: Sweeteners and Sugar Alternatives in Food Technology. Mitchell, H. (ed.) p. 54. Blackwell Publishing Ltd., Oxford (2007)

    Google Scholar 

  7. Aachary, A.A., Prapulla, S.G.: Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties and applications. Comp. Rev. Food Sci. Food Saf. 10, 2–16 (2011)

    Article  Google Scholar 

  8. Vazquez, M.J., Alonso, J.L., Dominguez, H., Parajo, J.C.: Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393 (2000)

    Article  Google Scholar 

  9. Gullon, P., Moura, P., Esteves, M., Girio, F.M., Dominguez, H., Parajo, J.C.: Assessment on the fermentability of xylo-oligosaccharides from rice husks by probiotic bacteria. J. Agri. Food Chem. 56, 7482–7487 (2008)

    Article  Google Scholar 

  10. Chung, Y.C., Hsu, C.K., Ko, C.Y., Chan, Y.C.: Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture and pH value in the elderly. Nutr. Res. 27, 756–761 (2007)

    Article  Google Scholar 

  11. Roberfroid, M., Slavin, J.: Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr. 40(6), 461–480 (2000)

    Article  Google Scholar 

  12. Gottschalk, L.M.F., Oliveira, R.A., Bom, E.P.S.: Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem. Eng. J. 51, 72–78 (2010)

    Article  Google Scholar 

  13. Cardona, C.A., Quintero, J.A., Paz, I.C.: Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101, 4754–4766 (2010)

    Article  Google Scholar 

  14. Samanta, A.K., Senani, S., Kolte, A.P., Sridhar, M., Sampath, K.T., Jayapal, N., Devi, A.: Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 90, 466–474 (2012)

    Article  Google Scholar 

  15. Akpinar, O., Erdogan, K., Bostanci, S.: Enzymatic production of xylooligosaccharides from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009)

    Article  Google Scholar 

  16. Gullon, B., Yanez, R., Alonso, J.L., Parajo, J.C.: Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour. Technol. 101, 6676–6684 (2010)

    Article  Google Scholar 

  17. Madhukumar, M.S., Muralikrishna, G.: Structural characterization and determination of prebiotic activity of purified xylo-oligosaccharides obtained from Bengal gram husk (Cicer arietinum L.) and wheat bran (Triticum aestivum). Food Chem. 118, 215–223 (2010)

    Article  Google Scholar 

  18. Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind. Crops Prod. 42, 14–24 (2013)

    Article  Google Scholar 

  19. Goering, H.K., Van-soest, P.J.: Forage fibre analysis. USDA Agricultural Research Service; Agricultural Handbook No. 379 (1970)

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, J., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 4, 1–15 (2011)

    Google Scholar 

  21. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  22. Kaur, R., Uppal, S.K.: Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym. Sci. 293, 2585–2592 (2015)

    Article  Google Scholar 

  23. Roos, A.A., Persson, T., Krawczyk, H., Zacchi, G., Stalbrand, H.: Extraction of water-soluble hemicelluloses from barley husks. Bioresour. Technol. 100, 763–769 (2009)

    Article  Google Scholar 

  24. Oliva, J.M., Saez, F., Ballesteros, I., Gonzalez, A., Negro, M.J., Manzanares, P., Ballesteros, M.: Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces maxianus. Appl. Microbiol. Biotechnol. 105, 141–154 (2003)

    Google Scholar 

  25. Xu, F., Sun, J., Sun, R., Fowler, P., Baird, M.S.: Comparative study of organosolv lignins from wheat straw. Ind. Crops Prod. 23, 180–193 (2006)

    Article  Google Scholar 

  26. Strepikheev, A.A., Knunyants, I.L., Nikolaeva, N.S., Mogilevsky, E.M.: The solubility of cellulose in quaternary ammonium bases. Russ. Chem. Bull. 6, 769–771 (1956)

    Article  Google Scholar 

  27. Ni, Y., Hu, Q.: Alcell lignin solubility in ethanol-water mixtures. J. Appl. Polym. Sci. 57, 1441–1446 (1995)

    Article  Google Scholar 

  28. Ruzene, D.S., Silva, P.D., Vicente, A.A., Goncalves, A.R., Teixeira, J.A.: An alternate application to the Portuguese agroindustrial residue: wheat straw. Appl. Biochem. Biotechnol. 147, 85–96 (2008)

    Article  Google Scholar 

  29. Gupta, S., Madan, R.N., Bansal, M.C.: Chemical composition of Pinus caribuca hemicelluloses. Tappi J. 70, 113–114 (1987)

    Google Scholar 

  30. Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q.: Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohyd. Polym. 56, 195–204 (2004)

    Article  Google Scholar 

  31. Moura, A., Gullon, P., Dominia, H., Parajo, J.C.: Advances in the manufacturer, purification and application of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41, 1913–1923 (2006)

    Article  Google Scholar 

  32. Pellerin, P., Gosselin, M., Lepoutre, J., Samain, E., Debeire, P.: Enzymatic production of oligosaccharides from corncobs xylan. Enzyme Microbiol. Technol. 13, 617–621 (1991)

    Article  Google Scholar 

  33. Akpinar, O., Erdogan, K., Bostanci, S.: Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res. 344, 660–666 (2009)

    Article  Google Scholar 

  34. Uppal, S.K., Kaur, R.: Hemicellulosic furfural production from sugarcane bagasse using different acids. Sugar Tech. 13(2), 166–169 (2011)

    Article  Google Scholar 

  35. Tuohy, K.M., Rouzaud, G.C.M., Bruck, W.M., Gibson, G.R.: Modulation of the human gut microflora towards improved health using prebiotics-Assessment of efficacy. Curr. Pharm. Des. 11, 75–90 (2005)

    Article  Google Scholar 

  36. Moura, P., Barata, R., Carvalheiro, F., Girio, F., Loureiro-Dias, M.C., Esteves, M.P.: In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT Food Sci. Technol. 40, 963–972 (2007)

    Article  Google Scholar 

  37. Swennen, K., Courtin, C.M., Van der Bruggen, B., Vandecasteele, C., Delcour, J.A.: Ultrafiltration and ethanol precipitation for isolation of arabino xylooligosaccharides with different structures. Carbohydr. Polym. 62, 283–292 (2005)

    Article  Google Scholar 

  38. Sanz, M.L., Polemis, N., Morales, V., Corzo, N., Drakoularakou, A., Gibson, G.R., Rastall, R.A.: In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J. Agric. Food Chem. 53, 2914–2921 (2005)

    Article  Google Scholar 

  39. Kokubo, I., Ikemizu, S.: Histamine-release inhibitors containing xylooligosaccharides. Japan Patent JP 2004059481 (2004)

Download references

Funding

This study was partially supported by Maulana Azad National Fellowship by University Grants Commission, India awarded to Ramandeep Kaur (MANF-2013-14-SIK-PUN-20159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Uppal, S.K. & Sharma, P. Production of Xylooligosaccharides from Sugarcane Bagasse and Evaluation of Their Prebiotic Potency In Vitro. Waste Biomass Valor 10, 2627–2635 (2019). https://doi.org/10.1007/s12649-018-0266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0266-1

Keywords

Navigation