Skip to main content
Log in

Optimization of Pistacia lentiscus Oil Transesterification Process Using Central Composite Design

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present work, Pistacia lentiscus (PL) biodiesel was produced by converting PL oil with a single-step homogenous alkali catalyzed transesterification process. Several ethanol/vegetable oil molar ratio values (6–12:1), temperatures from 40 to 70 °C and KOH catalyst amounts in the range 0.6–1.8 wt% were considered. The response surface methodology combined with central composite design was used to optimize the process. The results showed that the optimum conditions were obtained for an ethanol/oil molar ratio of 9:1, a reaction temperature of 40 °C and catalyst amount of 1.2 wt%. Under these conditions, the predicted PL oil ethyl ester conversion was around 88%. The characterization of PL biodiesel according to the standard methods showed that the physicochemical properties were similar to those of conventional diesel fuel and in agreement with European requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avhad, M.R., Marchetti, J.M.: A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 50, 696–718 (2015)

    Article  Google Scholar 

  2. Varuvel, E.G., Mrad, N., Tazerout, M., Aloui, F.: Experimental analysis of biofuel as an alternative fuel for diesel engines. Appl. Energy 94, 224–231 (2012)

    Article  Google Scholar 

  3. Awad, S., Loubar, K., Tazerout, M.: Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine. Energy 69, 826–836 (2014)

    Article  Google Scholar 

  4. Yoon, S.H., Lee, C.S.: Effect of undiluted bioethanol on combustion and emissions reduction in a SI engine at various charge air conditions. Fuel 97, 887–890 (2012)

    Article  Google Scholar 

  5. Roy, M.M., Tomita, E., Kawahara, N., Harada, Y., Sakane, A.: Comparison of performance and emissions of a supercharged dual-fuel engine fueled by hydrogen and hydrogen-containing gaseous fuels. Int. J.Hydrogen Energy 36, 7339–7352 (2011)

    Article  Google Scholar 

  6. McTaggart-Cowan, G.P., Rogak, S.N., Munshi, S.R., Hill, P.G., Bushe, W.K.: The influence of fuel composition on a heavy-duty, natural-gas direct-injection engine. Fuel 89, 752–759 (2010)

    Article  Google Scholar 

  7. Xin, Z., Jian, X., Shizhuo, Z., Xiaosen, H., Jianhua, L.: The experimental study on cyclic variation in a spark ignited engine fueled with biogas and hydrogen blends. Int. J. Hydrogen Energy 38, 11164–11168 (2013)

    Article  Google Scholar 

  8. Sahoo, P.K., Das, L.M.: Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel 88, 994–999 (2009)

    Article  Google Scholar 

  9. Rajasekar, E., Selvi, S.: Review of combustion characteristics of CI engines fueled with biodiesel. Renew. Sustain. Energy Rev. 35, 390–399 (2014)

    Article  Google Scholar 

  10. Singh, S.P., Singh, D.: Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew. Sustain. Energy Rev. 14, 200–216 (2010)

    Article  Google Scholar 

  11. Pinto, F., Varela, F.T., Gonçalves, M., Neto André, R., Costa, P., Mendes, B.: Production of bio-hydrocarbons by hydrotreating of pomace oil. Fuel 116, 84–93 (2014)

    Article  Google Scholar 

  12. Mancaruso, E., Sequino, L., Vaglieco, B.M.: First and second generation biodiesels spray characterization in a diesel engine. Fuel 90, 2870–2883 (2011)

    Article  Google Scholar 

  13. Tarabet, L., Loubar, K., Lounici, M.S., Khiari, K., Belmrabet, T., Tazerout, M.: Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode. Fuel 133, 129–138 (2014)

    Article  Google Scholar 

  14. Ramkumar, S., Kirubakaran, V.: Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: a critical review. Energy Convers. Manag. 118, 155–169 (2016)

    Article  Google Scholar 

  15. Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K.: Pistacia lentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 61, 31–40 (2014)

    Article  Google Scholar 

  16. Trabelsi, H., Cherif, O.A., Sakouhi, F., Villeneuve, P., Renaud, J., Barouh, N., Boukhchina, S., Mayer, P.: Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia. Food Chem. 131, 434–440 (2012)

    Article  Google Scholar 

  17. Charef, M., Yousfi, M., Saidi, M., Stocker, P.: Determination of the fatty acid composition of acorn (Quercus), Pistacia lentiscus seeds growing in Algeria. J. Am. Oil Chem. Soc. 85, 921–924 (2008)

    Article  Google Scholar 

  18. Ostos, J.C., Lopez-Garrido, R., Murillo, J.M., Lopez, R.: Substitution of peat for municipal solid waste and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L. Biores. Technol. 99, 1793–1800 (2008)

    Article  Google Scholar 

  19. Xie, L., Yang, Z.Y., Wena, J., Li, D.Z., Yi, T.S.: Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Mol. Phylogenet. Evol. 77, 136–146 (2014)

    Article  Google Scholar 

  20. Cheurfa, M., Allem, R.: Study of hypocholesterolemic activity of Algerian Pistacia lentiscus leaves extracts in vivo. Rev. Brasil. Farmacogn. 25, 142–144 (2015)

    Article  Google Scholar 

  21. Atmani, D., Chaher, N., Berboucha, M., Ayouni, K., Lounis, H., Boudaoud, H., Debbache, N., Atmani, D.: Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 112, 303–309 (2009)

    Article  Google Scholar 

  22. Awad, S., Paraschiv, M., Varuvel, E.G., Tazerout, M.: Optimization of biodiesel production from animal fat residue in waste water using response surface methodology. Biores. Technol. 129, 315–320 (2013)

    Article  Google Scholar 

  23. Liao, C.C., Chung, T.W.: Optimization of process conditions using response surface methodology for the microwave-assisted transesterification of Jatropha oil with KOH impregnated CaO as catalyst. Chem. Eng. Res. Des. 91, 2457–2464 (2013)

    Article  Google Scholar 

  24. Khiari, K.. Awad, S.. Loubar, K.. Tarabet, L.. Mahmoud, R.. Tazerout, M.: Experimental investigation of Pistacia lentiscus biodiesel as a fuel for direct injection diesel engine. Energy Convers. Manag. 108, 392–399 (2016)

    Article  Google Scholar 

  25. Dharma, S., Masjuki, H.H., Ong, H.C., Sebayang, A.H., Silitonga, A.S., Kusumo, F., Mahlia, T.M.I.: Optimization of biodiesel production process for mixed Jatropha curcasCeiba pentandra biodiesel using response surface methodology. Energy Convers. Manag. 115, 178–190 (2016)

    Article  Google Scholar 

  26. Zeng, J., Wang, X., Zhao, B., Sun, J., Wang, Y.: Rapid in situ transesterification of sunflower oil. IndEngChem Res. 48, 850–856 (2009)

    Google Scholar 

  27. Park, Y.M., Chung, J.Y., Park, I.S., Lee, S.Y., Kim, D.K.: Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel. J. Bioresour. Technol. 101, S59–S61 (2010)

    Article  Google Scholar 

  28. Kasim, F.H., Harvey, A.P.: Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production. Chem. Eng. J. 171, 1373–1378 (2011)

    Article  Google Scholar 

  29. Pradhan, S., Madankar, C.S., Mohanty, P., Naik, S.N.: Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology. Fuel 97, 848–855 (2012)

    Article  Google Scholar 

  30. Fox, M.A., Whitesell, J.K.: Organic Chemistry. Jones and Bartlett Publishers, Boston (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Khiari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiari, K., Tarabet, L., Awad, S. et al. Optimization of Pistacia lentiscus Oil Transesterification Process Using Central Composite Design. Waste Biomass Valor 10, 2575–2581 (2019). https://doi.org/10.1007/s12649-018-0257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0257-2

Keywords

Navigation