Skip to main content
Log in

Parabens Removal from Domestic Sewage by Free-Floating Aquatic Macrophytes

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Parabens are substances that prevent or delay the deterioration of cosmetics, drugs and food caused by the action of microorganisms. Recent studies report their potential to affect human health. The present study reported the efficiency of two aquatic macrophytes (Landoltia punctata and Lemna minor) in parabens (methyl and propyl parabens) removal from domestic sewage. Two 3000-L tanks were used in the experiment: tank A, containing L. punctata; and tank B, containing L. minor. Samples were collected every three days for 21 days at daylight and evening times. The best methylparaben (MeP) removal results were recorded for tank A, 90.8 and 90.6% removal at daylight and at evening time, respectively. For propylparaben (PrP), the best removal were recorded for tank B, 88.0 and 90.5% removal at daylight and at evening, respectively. These results highlight the efficiency of polishing ponds containing aquatic macrophytes for parabens removal purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

MeP:

Methylparaben

PrP:

Propylparabens

WWTP:

Wastewater treatment plants

References

  1. Albero, B., Pérez, R.A., Sánchez-Brunete, C., Tadeo, J.L.: Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). J. Hazard. Mater. 239–240, 48–55 (2012)

    Article  Google Scholar 

  2. Zotou, A., Sakla, I., Tzanavaras, P.D.: LC-determination of five paraben preservatives in saliva and toothpaste samples using UV detection and a short monolithic column. J. Pharm. Biomed. Anal. 53, 785–789 (2010)

    Article  Google Scholar 

  3. Bila, D.M., Dezotti, M.: Desreguladores endócrinos no meio ambiente: efeitos e consequências. Quim Nova. 30, 651–666 (2007)

    Article  Google Scholar 

  4. Peake, B.M., Braund, R.: Environmental aspects of the disposal of pharmaceuticals in New Zealand. Chem. N.Z. 73, 58–63 (2009)

    Google Scholar 

  5. Verlicchi, P., Al Aukidy, A., Zambello, E.: Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after secondary treatment: a review. Sci. Total Environ. 429, 123–155 (2012)

    Article  Google Scholar 

  6. Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., Wang, Z.: Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397(1), 158–166 (2008)

    Article  Google Scholar 

  7. Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Kagota, K., Katsuki, S., Tatarazako, N.: Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach. Sci. Total Environ. 410–411, 102–111 (2011)

    Article  Google Scholar 

  8. González-Mariño, I., Quintana, J.B., Rodríguez, I., Cela, R.: Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Res. 45(20), 6770–6780 (2011)

    Article  Google Scholar 

  9. Santos, M.M.D., Brehm, F.D.A., Filippe, T.C., Knapik, H.G., Azevedo, J.C.R.D.: Occurrence and risk assessment of parabens and triclosan in surface waters of southern Brazil: a problem of emerging compounds in an emerging country. RBRH. 21, 603–617 (2016)

    Article  Google Scholar 

  10. Li, X., Zheng, W., Kell, W.R.: Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons. Sci. Total Environ. 445, 22–28 (2013)

    Article  Google Scholar 

  11. Gárcia-Rodríguez, A., Matamoros, V., Fontàs, C., Salvadó, V.: The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. Int. J. Environ. Sci. Technol. 12, 2327–2338 (2015)

    Article  Google Scholar 

  12. Baranowska, I., Wojciechowska, I.: The determination of preservatives in cosmetics and environmental waters by HPLC. PJoES. 22(6), 1609–1625 (2013)

    Google Scholar 

  13. Tetila, M.: Uso de reator aeróbio de leito fluidizado com circulação como dispositivo de pós-tratamento do efluente de um reator UASB compartimentado tratando esgotos sanitários. 135 f. Dissertation (Master of Science (MSc) in Civil Engineering), UNESP—Univ Estadual Paulista. Ilha Solteira (2015)

  14. Matamoros, V., Gutiérrez, R., Ferrer, I., García, J., Bayona, J.M.: Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater. 288, 34–42 (2015)

    Article  Google Scholar 

  15. Krishna, K.C.B., Polprasert, C.: An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecol Eng. Thail. 34, 243–250 (2008)

    Article  Google Scholar 

  16. Ran, N., Agami, M., Oron, G.: A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Res. 38, 2241–2248 (2004)

    Article  Google Scholar 

  17. Sims, A., Gajaraj, S., Hu, Z.: Nutrient removal and greenhouse gas emissions in duckweed treatment ponds. Water Res. 47(3), 1390–1398 (2013)

    Article  Google Scholar 

  18. Henares, M.N.P., Camargo, A.F.M.: Estimating nitrogen and phosphorus saturation point for Eichhornia crassipes (Mart.) Solms and Salvinia molesta Mitchell in mesocosms used to treating aquaculture effluent. Acta Limnol. 26(4), 420–428 (2014)

    Article  Google Scholar 

  19. Bittencourt, S., Aisse, M.M., Serrat, B.M., Azevedo, J.C.R.D.: Sorção de poluentes orgânicos emergentes em lodo de esgoto. Eng. Sanit. Ambient. 21(1), 43–53 (2016)

    Article  Google Scholar 

  20. Dordio, A.V., Belo, M., Teixeira, D.M., Carvalho, A.P., Dias, C.M.B., Picó, Y., Pinto, A.P.: Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour. Technol. 102, 7827–7834 (2011)

    Article  Google Scholar 

  21. Onuche, P.U., Okibe, F.G., Ajibolal, V.O.: Biodegradation of sodium dodecyl sulphate and methyl paraben in shampoo and hair dressing salon waste by bacteria from sewage treatment sludge. Am. Chem. Sci. J. 14, 1–9 (2016)

    Article  Google Scholar 

  22. Gasperi, J., Geara, D., Lorgeoux, C., Bressy, A., Zedek, S., Rocher, V., Moilleron, R.: First assessment of triclosan, triclocarban and paraben mass loads at a very large regional scale: case of Paris conurbation (France). Sci. Total Environ. 493, 854–861 (2014)

    Article  Google Scholar 

  23. Kumar, K.A., Chiranjeevi, P., Mohanakrishna, G., Mohan, S.V.: Natural attenuation of endocrine-disrupting estrogens in an ecologically engineered treatment system (EETS) designed with floating, submerged and emergent macrophytes. Ecol. Eng. 37, 1555–1562 (2011)

    Article  Google Scholar 

  24. Li, F., Zhu, L., Wang, L., Zhan, Y.: Gene expression of an arthrobacter in surfactant-enhanced biodegradation of a hydrophobic organic compound. Environ. Sci. Technol. 49, 3698–3704 (2015)

    Article  Google Scholar 

  25. Chen, H.W., Chiou, C.S., Chang, S.H.: Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group. Powder Technol. 311, 426–431 (2017)

    Article  Google Scholar 

  26. Matamoros, V., Gárcia-Rodriguez, A., Bayona, J.M.: Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res. 42, 653–660 (2008)

    Article  Google Scholar 

  27. Zhang, D.Q., Hua, T., Gersberg, R.M., Zhu, J., Ng, W.J., Tan, S.K.: Carbamazepine and naproxen: fate in wetland mesocosms planted with scirpus validus. Chemosphere 91, 14–21 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Anjos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjos, M.L., Isique, W.D., Albertin, L.L. et al. Parabens Removal from Domestic Sewage by Free-Floating Aquatic Macrophytes. Waste Biomass Valor 10, 2221–2226 (2019). https://doi.org/10.1007/s12649-018-0245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0245-6

Keywords