Skip to main content
Log in

Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

For the economically depressed communities such as of those in the Canton Guaranda, Ecuador, to generate their own energy, from organic waste is very important because they are sometimes insulated and its gas and electricity supply is very deficient. The aim of this research, was to determine the feasibility of anaerobic co-digestion of wasted cabbage from the town’s market in Guaranda, Ecuador, and livestock manure. Two variables were studied: temperature of the process and the percentage of cabbage and livestock manure. Biogas quantity and kinetic parameters were evaluated. Kinetic model were analyzed by minimizing the mean percentage of error between the observed values (measured experimentally) and predicted, using the Runge–Kutta of order 4 for solving the system of differential equations obtained from mass balance. The results showed that a 50–50% ratio cabbage-manure at 30 °C temperature gave the highest production of biogas achieved is (389.47 cm3 N/g initial SV) with a composition of 61% methane. The kinetic parameters found were µmax = 0.1053 day−1; Ks = 0.1153 mg/l; Y = 0.00246 g VSS /g COD and Kdec = 0.001005 day−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkaya, E., Erguder, T.H., Demirer, G.N.: Effect of operational parameters on anaerobic co-digestion of dairy cattle manure and agricultural residues: a case study for the Kahramanmaras region in Turkey. Eng. Life Sci. 10, 552–559 (2010)

    Article  Google Scholar 

  2. Angelidaki, I., Ahring, B.K.: Effects of free long fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37(6), 808–812 (1992)

    Article  Google Scholar 

  3. Angelidaki, I., Ahring, B.K.: Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation. 3, 409–414 (1993)

    Article  Google Scholar 

  4. Angelidaki, I., Ahring, B.K.: Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28(3), 727–731 (1994)

    Article  Google Scholar 

  5. APHA: Standard Methods for the Examination of Water and Wastewater. (2005). 21th edn. Washington, DC. American Public Health Association

    Google Scholar 

  6. Callaghan, F., Wase, J., Thayanithy, K., Forster, C.: Co-digestion of waste organic solids: batch studies. Biores. Technol. 67, 117–122 (1999)

    Article  Google Scholar 

  7. Campos-Pozualo A.E.: Optimización de la digestión anaerobia de purines de cerdo mediante codigestión con residuos orgánicos de la industria agroalimentaria. Tesis de doctorado Universidad de Lleida. España (2001)

  8. Cendales, E.: Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable. Tesis de Magister en Ingeniería Mecánica. Universidad Nacional de Colombia. Bogotá, D.C., Colombia (2011)

  9. Chapra, S., Canale, R.: Métodos Numéricos para Ingenieros, 5ta edición. Mc Graw Hill. pp. 1001 (2007)

  10. Chynoweth, D.P., Wilkie, A.C., Owens, J.M.: (1998). Anaerobic processing of piggery wastes: a review. Proceedings of the ASAE Annual International Meeting, Orlando, Florida, USA

  11. Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., Suzzi, G.: Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol. 3, 248 (2012). https://doi.org/10.3389/fmicb.2012.00248

    Article  Google Scholar 

  12. Demirbas, A.H., Demirbas, I.: Importance of rural bioenergy for developing countries. Energy Convers. Manag. 48, 2386–2398 (2007)

    Article  Google Scholar 

  13. Díaz, J.P., Reyes, I.P., Lundin, M., Horváth, I.S.: Bioresource technology. Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102, 10834–10840 (2011)

  14. Fields, T.D., Lys, T.Z., Vincent, L.: Empirical research on accounting choice. J. Acc. Econ. 31(1–3), 255–307 (2001)

    Article  Google Scholar 

  15. Gaibor-Chávez, S., Pérez-Pacheco, B., Velázquez-Martí, Z., Niño-Ruiz, V., Domínguez- Narváez: Dendrometric characterization of corn cane residues and 1 drying models in natural conditions in bolivar province (Ecuador). Renew. Energy. 86, 745–750 (2016)

    Article  Google Scholar 

  16. Hashimoto, A.G.: Ammonia Inhibition of methanogenesis from cattle wastes. Agric. Wastes. 17, 241–261 (1986)

    Article  Google Scholar 

  17. Hashimoto, A.G.: Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biological Wastes. 28, 247–255 (1989)

    Article  Google Scholar 

  18. Jih-Gaw, L., Ying-Shih, M., Allen, C., Cheng-Lung, H.: BMP test on chemically pretreated sludge. Biores. Technol. 68, 187–192 (1999)

    Article  Google Scholar 

  19. Kaffle, G.P., Kim, S.H., y Sung, K.: Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions. Biores. Technol. 124, 489–494 (2012)

    Article  Google Scholar 

  20. Kafle, G.K., Bhattarai, S., Kim, S.H., Chen, L.D.: Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study. Environ. Technol. 35, 2708–2717 (2014)  

    Article  Google Scholar 

  21. Khanal, S.: Anaerobic Biotechnology for Bioenergy Production—Principles and Applications. Blackwell Publishing, Iowa (2008)

    Book  Google Scholar 

  22. Li, R., Chen, S., Li, X., Lar, J.S., et al.: Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels. 23, 2225–2228 (2009)

    Article  Google Scholar 

  23. Li, Y., Hua, D., Mu, H., Xu, H., Jin, F., Zhang, X.: Conversion of vegetable wastes to organic acids in leaching bed reactor: Performance and bacterial community analysis. J. Biosci. Bioenergy 124(2), 195–203 (2017)

    Article  Google Scholar 

  24. Lomas, J.M., Urbano, C., Camarero, L.M.: Evaluation of a pilot scale downflow stationary fixed film anaerobic reactor treating piggery slurry in the mesophilic range. Biomass Bioenergy. 17, 49–58 (1999)

    Article  Google Scholar 

  25. Masse, D.I., Talbot, G., Gilbert, Y.: On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed Sci. Technol. 166, 436–445 (2011)

    Article  Google Scholar 

  26. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949)

    Article  Google Scholar 

  27. Pagés Díaz, J., Pereda Reyes, I., Lundin, M., Sárvári Horváth, I.: Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102(23), 10834–10840 (2011)

    Article  Google Scholar 

  28. Patra, J.K., Das, G., Paramithiotis, S., Shin, H.: Kimchi and other widely consumed traditional fermented foods of korea: A review. Front. Microbiol. 7, 1493 (2016)

  29. Robbins, J.E., Gerhardt, S.A., Kappel, T.J.: Effects of total amonia on anaerobic digestion and an example of digestor performance from cattlemanure-protein mixture. Biol. Wastes. 27, 1–4 (1989)

    Article  Google Scholar 

  30. Sakar, S., Yetilmezsoy, K., Kocak, E.: Anaerobic digestion technology in poultry and livestock waste treatment—a literature review. Waste Manag. Res. 27, 3–18 (2009)

    Article  Google Scholar 

  31. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., et al.: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Biores. Technol. 144, 80–85 (2013)

    Article  Google Scholar 

  32. Sonnand, J.R., Goudar, C.T.: (2004). Solution of the Haldane equation for substrate inhibition enzyme kinetics using the decomposition method. Math. Comput. Modelling 40(5–6), 573–582

    Article  MathSciNet  MATH  Google Scholar 

  33. Steffen, R., Szolar, O., Braun, R.: Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna (1998)

    Google Scholar 

  34. Strick, D.P, Domnanovich, A.M., Holubar, P.: A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem. 41, 1235–1238 (2006)

    Article  Google Scholar 

  35. Trejos, V.M., Fontalvo, A.J., Garcia, M.A.G.: Descripción matemática y análisis de estabilidad de procesos fermentativos. Dyna, vol. 76, núm. 158, junio, 2009, pp. 111–121 (2009)

  36. Trujillo, D., Pérez, J.F., Cebreros, F.J.: Energy recovery from wastes. Anaerobic digestion of tomato plant mixed with rabbit wastes. Biores. Technol. 45, 81–83 (1993)

    Article  Google Scholar 

  37. Wang, J.: Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front. Energy Res. 2, 10 (2014)

    Google Scholar 

  38. Zaher, U., Rongping, L., Jeppsson, U., Steyer, J., Chen, S.: GISCOD: general integrated solid waste co-digestion model. Water Res. 43, 2717–2727 (2009)

    Article  Google Scholar 

  39. Zeeman, G., Wiegant, W.M., Koster-Treffers, M.E., Lettinga, G.: The influence of total ammonia concentration on the thermophilic digestion of cow manure. Agric. Wastes. 14, 19–35 (1985)

    Article  Google Scholar 

  40. Zhang, L., Xu, C., Champagne, P.: Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51, 969–982 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been carried out inside the cooperation framework funded by the ADSIDEO program of the Centro de Cooperación al Desarrollo (CCD) of Universidad Politécnica de Valencia (Spain), in collaboration with the Centro de Estudios de la Biomasa (CEB), Universidad Estatal de Bolívar, Guaranda, Ecuador. The participation of Dr. Sergio Pérez in this work was possible thanks to funding from the Ecuadorian Government by means of the PROMETEO program, led by the Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SENESCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Velázquez-Martí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaibor-Chávez, J., Niño-Ruiz, Z., Velázquez-Martí, B. et al. Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure. Waste Biomass Valor 10, 2129–2137 (2019). https://doi.org/10.1007/s12649-018-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0228-7

Keywords

Navigation