Combined Remediation and Protein Production Using Microalgae Growth on Waste Bakery Products

Abstract

A new concept of bakery industry waste use as a nutrient source for the production of proteins by microalgae growth has been developed. The proposed ideas provide an innovative approach to establish a system to valorise bakery industry waste, more specifically, the so-called waste ´biscuits flour´, and to produce rich protein algal biomass, which could potentially be applied in feed industry. Biscuits flour was used as carbon and nutrients source in mixotrophic growth of Chlorella sorokiniana, pure culture, and a mixed culture of microalgae taken from a natural environment. The feasibility of utilizing bakery waste, raw and hydrolysate, for algal biomass production was investigated and compared with the growth of the microalgae in WARIS-H medium and in natural water. Although better biomass growth is achieved with hydrolysed flour, highest concentration of proteins were obtained for C. sorokiniana and the mixed culture, 34.63 and 24.06% respectively, when the waste flour is not hydrolised at the beginning of the assay. These figures contrast with the lower protein content in both cultures, 3.63 and 8.94%, respectively, when WARIS-H medium and natural water are used as nutrient sources. These good preliminary results, together with a situation in which the supply of raw materials for livestock and farmed fish is beginning to become critical, give rich-protein microalgae production increasing relevance as a source of feed.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Stenmarck, A., Jensen, C., Quested, T., Moates, G.: Estimates of European food waste levels. FUSIONS EU project deliverable. http://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf. Accessed 02 Nov 2017

  2. 2.

    European Commission: Circular Economy Package. http://www.europarl.europa.eu/legislative-train/theme-new-boost-for-jobs-growth-and-investment/package-circular-economy-package. Accessed 02 Nov 2017

  3. 3.

    Pleissner, D., Lam, W.C., Sun, Z., Lin, C.S.K.: Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 137, 139–146 (2013)

    Article  Google Scholar 

  4. 4.

    Schott, A.B.S., Andersson, T.: Food waste minimization from a life-cycle perspective. J. Environ. Manag. 147, 219–226 (2015)

    Article  Google Scholar 

  5. 5.

    Jack, Y., Cheng, K., Irene, M., Lo, C.: Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong. Environ. Sci. Pollut. Res. Int. 23(8), 7169 (2016)

    Article  Google Scholar 

  6. 6.

    Salemdeeb, R., zu Ermgassen, E.K., Kim, M.H., Balmford, A., Al-Tabbaa, A.: Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J. Clean. Prod. 140, 871–880 (2017)

    Article  Google Scholar 

  7. 7.

    Dahiya, S., Kumar, A.N., Sravan, J.S., Chatterjee, S., Sarkar, O., Mohan, S.V.: Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.07.176

    Article  Google Scholar 

  8. 8.

    Hidalgo, D.: Heterotrophic microalgae cultivation to synergize anaerobic digestate treatment with slow-release fertilizers and biostimulants production. J. Environ. Waste Manag. 1, 1 (2015)

    Google Scholar 

  9. 9.

    Smetana, S., Sandmann, M., Rohn, S., Pleissner, D., Heinz, V.: Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.08.113

    Article  Google Scholar 

  10. 10.

    FAO: Detailed trade matrix 1963–2013. http://www.fao.org/faostat/en/#data/TM. Accessed 03 Nov 2017

  11. 11.

    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.: Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)

    Article  Google Scholar 

  12. 12.

    Tingting, L., Zheng, Y., Yu, L., Chen, S.: Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66, 204–213 (2014)

    Article  Google Scholar 

  13. 13.

    Kim, S., Park, J.E., Cho, Y.B., Hwang, S.J.: Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144, 8–13 (2013)

    Article  Google Scholar 

  14. 14.

    Shriwastav, A., Gupta, S.K., Ansari, F.A., Rawat, I., Bux, F.: Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour. Technol. 174, 60–66 (2014)

    Article  Google Scholar 

  15. 15.

    Hu, Z.X., Xu, N., Li, A.F., Duan, S.S.: Effects of different N:P ratios on the growth of Pseudo-nitzschia pungens, Prorocentrum donghaiense and Phaeocystis globosa. Acta Hydrobiol. Sin. 32(4), 482–487 (2008)

    Article  Google Scholar 

  16. 16.

    Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G., Oyler, G.A.: Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 150, 377–386 (2013)

    Article  Google Scholar 

  17. 17.

    Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F.: Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88, 3411–3424 (2011)

    Article  Google Scholar 

  18. 18.

    Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 25(2), 207–210 (2007)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Singh, M., Reynolds, D.L., Das, K.C.: Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol. 102(23), 10841–10848 (2011)

    Article  Google Scholar 

  20. 20.

    Akgül, R.: Desmodesmus communis (E.Hegewald) E.Hegewald Mikroalginin Kültürü ve Biyokimyasal Özellikleri. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi 5(4), 404–408 (2017)

    Google Scholar 

  21. 21.

    Neveux, N., Magnusson, M., Maschmeyer, T., Nys, R., Paul, N.A.: Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae. Gcb Bioenergy. 7(4), 673–689 (2015)

    Article  Google Scholar 

  22. 22.

    Pacheco, F.: Efeito da temperatura no cultivo unialgal e misto de microalgas (crescimento e composição bioquímica) como subsídio para a aplicação biotecnológica. Doctoral dissertation, Universidade Federal do Espírito Santo (2016)

  23. 23.

    Sun, X., Xu, N.J., Jiang, L.Z., Hu, W.: Gene expression profiles of the heterotrophic microalga Chlorella pyrenoidosa F-9. Genet. Mol. Res. 13(4), 8411–8420 (2014)

    Article  Google Scholar 

  24. 24.

    Ewing, A.M.: Plastid evolution of the heterotrophic microalgae Prototheca. Plant and Animal Genome XXIII Conference. Plant and Animal Genome, San Diego (2015)

    Google Scholar 

  25. 25.

    Bushuk, W., Rasper, V.F.: Wheat: Production, Properties and Quality. Springer, Cham (1994)

    Book  Google Scholar 

  26. 26.

    Gupta, S.K., Ansari, F.A., Shriwastav, A., Sahoo, N.K., Rawat, I., Bux, F.: Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 115, 255–264 (2016)

    Article  Google Scholar 

  27. 27.

    McFadden, G.I., Melkonian, M.: Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25(4), 551–557 (1986)

    Article  Google Scholar 

  28. 28.

    de Mattos, L.F.A., Bastos, R.G.: COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalin. Water Treat. 57(20), 9465–9473 (2016)

    Article  Google Scholar 

  29. 29.

    Kendrick, M.: Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage. Doctoral dissertation, Loughborough University © Martin Kendrick (2011)

  30. 30.

    Almanza, V., Parra, O., Carlos, E.D.M., Baeza, C., Beltran, J., Figueroa, R., Urrutia, R.: Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake. Revista chilena de historia natural 89(1), 8 (2016)

    Article  Google Scholar 

  31. 31.

    Contreras, S., Rio, A.D., Soto, M.A.: Autochton blue-green alga (Oscillatoria sp.) with high protein content and self-aggregation properties. Biotechnol. Bioeng. 18(10), 1479–1480 (1976)

    Article  Google Scholar 

  32. 32.

    Huang, T.: Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins, vol. 38. Springer, Cham (2015)

    Google Scholar 

  33. 33.

    AOAC (Association of Official Agricultural Chemists): Official Methods of Analysis. Dumas Method (990.03), 15th edn. Association of Official Agricultural Chemists, Washington D.C. (2005)

    Google Scholar 

  34. 34.

    Su, Y., Mennerich, A., Urban, B.: A comparison of feasible methods for microalgal biomass determinations during tertiary wastewater treatment. Ecol. Eng. 94, 532–536 (2016)

    Article  Google Scholar 

  35. 35.

    Guldhe, A., Ansari, F.A., Singh, P., Bux, F.: Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 99, 47–53 (2017)

    Article  Google Scholar 

  36. 36.

    Shobana, S., Saratale, G.D., Pugazhendhi, A., Arvindnarayan, S., Periyasamy, S., Kumar, G., Kim, S.H.: Fermentative hydrogen production from mixed and pure microalgae biomass: key challenges and possible opportunities. Int. J. Hydrog. Energy 42(42), 26440–26453 (2017)

    Article  Google Scholar 

  37. 37.

    Fadlallah, H., Jarrahi, M., Herbert, E., Ferrari, R., Mejean, A., Peerhossaini, H.: Effects of shear stress on the growth rate of micro-organisms in agitated reactors. In: ASME 2016 Fluids Engineering Division Summer Meeting Collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels (pp. V01AT13A006–V01AT13A006). American Society of Mechanical Engineers. ISO 690 (2016)

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the Agencia de Innovación, Financiación e Internacionalización Empresarial de Castilla y León (ADE), project: “Circular Economy in the Agri-Food Sector” and by the Centro para el Desarrollo Tecnológico Industrial (CDTI), project: “CIEN PROGRESO, Proteins of the Future”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dolores Hidalgo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, D., Mussons, M.L., Martín-Marroquín, J.M. et al. Combined Remediation and Protein Production Using Microalgae Growth on Waste Bakery Products. Waste Biomass Valor 9, 2413–2422 (2018). https://doi.org/10.1007/s12649-018-0216-y

Download citation

Keywords

  • Chlorella sorokiniana
  • Desmodesmus communis
  • Microalgae
  • Mixotrophic culture
  • Protein
  • Waste flour