Skip to main content
Log in

Selecting Monitoring Variables in the Manual Composting of Municipal Solid Waste Based on Principal Component Analysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper proposes the use of principal component analysis performed on the correlation matrix for identifying the best variables for monitoring the composting of municipal solid wastes. Accordingly, 12 physicochemical and two microbiological parameters have been measured throughout the 7 weeks in which the compositing of 1300 kg of organic wastes obtained from MSW was carried out. All the analyses confirm a correct development of the composting process, and the final values fulfil the requirements of the Colombian legislation. The statistical analysis shows that four variables are sufficient for ensuring a suitable process development and, based on economic criteria and technical simplicity, the selected ones are as follows: respirometry, water retention capacity, ash content and moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CEC:

Cationic exchange capacity

CFU:

Colony forming units

FDA:

Fluorescein diacetate assay

ICS:

International Classification for Standards

ISO:

International Organization for Standardization

mosl:

Meters above sea level

MSW:

Municipal solid waste

NTC:

Colombian standard reference

PCA:

Principal component analysis

PLFA:

Phospholipid fatty acid analysis

TOC:

Total organic carbon

WRC:

Water retention capacity

References

  1. Abouelwafa, R., Amir, S., Souabi, S., Winterton, P., Ndira, V., Revel, J.-C., Hafidi, M.: The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Bioresour. Technol. 99, 6112–6118 (2008). https://doi.org/10.1016/j.biortech.2007.12.033

    Article  Google Scholar 

  2. Albrecht, R., Périssol, C., Ruaudel, F., Petit, J.L., Terrom, G.: Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manag. 30, 764–770 (2010). https://doi.org/10.1016/j.wasman.2009.12.008

    Article  Google Scholar 

  3. Alfaro, C.A., Aydın, B., Valencia, C.E., Bullitt, E., Ladha, A.: Dimension reduction in principal component analysis for trees. Comput. Stat. Data Anal. 74, 157–179 (2014). https://doi.org/10.1016/j.csda.2013.12.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Amir, S., Benlboukht, F., Cancian, N., Winterton, P., Hafidi, M.: Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. J. Hazard. Mater. 160, 448–455 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.017

    Article  Google Scholar 

  5. Amir, S., Jouraiphy, A., Meddich, A., El Gharous, M., Winterton, P., Hafidi, M.: Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 177, 524–529 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.064

    Article  Google Scholar 

  6. Amir, S., Merlina, G., Pinelli, E., Winterton, P., Revel, J.-C., Hafidi, M.: Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis. J. Hazard. Mater. 159, 593–601 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.062

    Article  Google Scholar 

  7. Awasthi, M.K., Pandey, A.K., Khan, J., Bundela, P.S., Wong, J.W.C., Selvam, A.: Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 168, 214–221 (2014). https://doi.org/10.1016/j.biortech.2014.01.048

    Article  Google Scholar 

  8. Baptista, M., Antunes, F., Gonçalves, M.S., Morvan, B., Silveira, A.: Composting kinetics in full-scale mechanical-biological treatment plants. Waste Manag. 30, 1908–1921 (2010). https://doi.org/10.1016/j.wasman.2010.04.027

    Article  Google Scholar 

  9. Barrena, R., Turet, J., Busquets, A., Farrés, M., Font, X., Sánchez, A.: Respirometric screening of several types of manure and mixtures intended for composting. Bioresour. Technol. 102, 1367–1377 (2011). https://doi.org/10.1016/j.biortech.2010.09.011

    Article  Google Scholar 

  10. Benito, M., Masaguer, A., Moliner, A., Arrigo, N., Palma, R.M.: Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol. Fertil. Soils. 37, 184–189 (2003). https://doi.org/10.1007/s00374-003-0584-7

    Google Scholar 

  11. Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453 (2009). https://doi.org/10.1016/j.biortech.2008.11.027

    Article  Google Scholar 

  12. Boulter-Bitzer, J.I., Trevors, J.T., Boland, G.J.: A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Appl. Soil Ecol. 34, 65–81 (2006). https://doi.org/10.1016/j.apsoil.2005.12.007

    Article  Google Scholar 

  13. Bueno, P., Tapias, R., López, F., Díaz, M.J.: Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99, 5069–5077 (2008). https://doi.org/10.1016/j.biortech.2007.08.087

    Article  Google Scholar 

  14. Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Pérez-Espinosa, A., Bernal, M.P., Moral, R.: Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere. 72, 551–557 (2008). https://doi.org/10.1016/j.chemosphere.2008.03.030

    Article  Google Scholar 

  15. Cabeza, I.O., López, R., Ruiz-Montoya, M., Díaz, M.J.: Maximising municipal solid waste—legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manag. 128, 266–273 (2013). https://doi.org/10.1016/j.jenvman.2013.05.030

    Article  Google Scholar 

  16. Campitelli, P., Ceppi, S.: Chemical, physical and biological compost and vermicompost characterization: a chemometric study. Chemom. Intell. Lab. Syst. 90, 64–71 (2008). https://doi.org/10.1016/j.chemolab.2007.08.001

    Article  Google Scholar 

  17. Canet, R., Pomares, F.: Changes in physical, chemical and physico-chemical parameters during the composting of municipal solid wastes in two plants in Valencia. Bioresour. Technol. 51, 259–264 (1995). https://doi.org/10.1016/0960-8524(94)00132-K

    Article  Google Scholar 

  18. Cherubini, F., Bargigli, S., Ulgiati, S.: Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Waste Manag. 28, 2552–2564 (2008). https://doi.org/10.1016/j.wasman.2007.11.011

    Article  Google Scholar 

  19. Confesor, R.B. Jr., Hamlett, J.M., Shannon, R.D., Graves, R.E.: Potential pollutants from farm, food and yard waste composts at differing ages: part I physical and chemical properties. Compost Sci. Util. 16, 228–238 (2008). https://doi.org/10.1080/1065657X.2008.10702384

    Article  Google Scholar 

  20. Dimambro, M.E., Lillywhite, R.D., Rahn, C.R.: The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Sci. Util. 15, 243–252 (2007). https://doi.org/10.1080/1065657X.2007.10702340

    Article  Google Scholar 

  21. D’Imporzano, G., Crivelli, F., Adani, F.: Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting. Sci. Total Environ. 402, 278–284 (2008). https://doi.org/10.1016/j.scitotenv.2008.04.053

    Article  Google Scholar 

  22. Dresbøll, D.B., Magid, J.: Structural changes of plant residues during decomposition in a compost environment. Bioresour. Technol. 97, 973–981 (2006). https://doi.org/10.1016/j.biortech.2005.05.003

    Article  Google Scholar 

  23. Feng, C., Zeng, G., Huang, D., Hu, S., Zhao, M., Lai, C., Huang, C., Wei, Z., Li, N.: Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochem. 46, 1515–1520 (2011). https://doi.org/10.1016/j.procbio.2011.01.038

    Article  Google Scholar 

  24. Fuentes, A., Lloréns, M., Sáez, J., Isabel Aguilar, M., Ortuño, J.F., Meseguer, V.F.: Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour. Technol. 99, 517–525 (2008). https://doi.org/10.1016/j.biortech.2007.01.025

    Article  Google Scholar 

  25. Gil, M.V., Calvo, L.F., Blanco, D., Sánchez, M.E.: Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour. Technol. 99, 5763–5772 (2008). https://doi.org/10.1016/j.biortech.2007.10.014

    Article  Google Scholar 

  26. Gómez-Brandón, M., Lazcano, C., Domínguez, J.: The evaluation of stability and maturity during the composting of cattle manure. Chemosphere. 70, 436–444 (2008). https://doi.org/10.1016/j.chemosphere.2007.06.065

    Article  Google Scholar 

  27. Grigatti, M., Cavani, L., Ciavatta, C.: A multivariate approach to the study of the composting process by means of analytical electrofocusing. Waste Manag. 27, 1072–1082 (2007). https://doi.org/10.1016/j.wasman.2006.05.011

    Article  Google Scholar 

  28. Guo, X., Gu, J., Gao, H., Qin, Q., Chen, Z., Shao, L., Chen, L., Li, H., Zhang, W., Chen, S., Liu, J.: Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour. Technol. 108, 140–148 (2012). https://doi.org/10.1016/j.biortech.2011.12.087

    Article  Google Scholar 

  29. Hamoda, M.F., Abu Qdais, H.A., Newham, J.: Evaluation of municipal solid waste composting kinetics. Resour. Conserv. Recycl. 23, 209–223 (1998). https://doi.org/10.1016/S0921-3449(98)00021-4

    Article  Google Scholar 

  30. Hargreaves, J.C., Adl, M.S., Warman, P.R.: A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 123, 1–14 (2008). https://doi.org/10.1016/j.agee.2007.07.004

    Article  Google Scholar 

  31. Hernández, T., Masciandaro, G., Moreno, J.I., García, C.: Changes in organic matter composition during composting of two digested sewage sludges. Waste Manag. 26, 1370–1376 (2006). https://doi.org/10.1016/j.wasman.2005.10.006

    Article  Google Scholar 

  32. Himanen, M., Hänninen, K.: Effect of commercial mineral-based additives on composting and compost quality. Waste Manag. 29, 2265–2273 (2009). https://doi.org/10.1016/j.wasman.2009.03.016

    Article  Google Scholar 

  33. Iannotti, D.A., Grebus, M.E., Toth, B.L., Madden, L.V., Hoitink, H.a.J.: 1994. Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J. Environ. Qual. 23(6), 1177–1183

    Article  Google Scholar 

  34. Jacobs, R.D.: Basic concepts for composting Poultry Mortalities, Dairy and Poultry Sciences Department. Institute of Food and Agricultural Science, Florida Cooperative Extension Service, Gainesville (1998)

    Google Scholar 

  35. Kalamdhad, A.S., Pasha, M., Kazmi, A.A.: Stability evaluation of compost by respiration techniques in a rotary drum composter. Resour. Conserv. Recycl. 52, 829–834 (2008). https://doi.org/10.1016/j.resconrec.2007.12.003

    Article  Google Scholar 

  36. Kanat, G., Demir, A., Ozkaya, B., Sinan Bilgili, M.: Addressing the operational problems in a composting and recycling plant. Waste Manag. 26, 1384–1391 (2006). https://doi.org/10.1016/j.wasman.2005.12.010

    Article  Google Scholar 

  37. Komilis, D.P., Ham, R.K., Stegmann, R.: The effect of municipal solid waste pretreatment on landfill behavior: a literature review. Waste Manag. Res. 17, 10–19 (1999). https://doi.org/10.1177/0734242X9901700103

    Article  Google Scholar 

  38. Lavine, B.K., Davidson, C.E., Ritter, J., Westover, D.J., Hancewicz, T.: Varimax extended rotation applied to multivariate spectroscopic image analysis. Microchem. J. 76, 173–180 (2004). https://doi.org/10.1016/S0026-265X(03)00159-0

    Article  Google Scholar 

  39. Li, Z., Lu, H., Ren, L., He, L.: Experimental and modeling approaches for food waste composting: a review. Chemosphere. 93, 1247–1257 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.064

    Article  Google Scholar 

  40. López, R., Cabeza, I.O., Giráldez, I., Díaz, M.J.: Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 102, 7984–7993 (2011). https://doi.org/10.1016/j.biortech.2011.05.085

    Article  Google Scholar 

  41. Lu, Y., Wu, X., Guo, J.: Characteristics of municipal solid waste and sewage sludge co-composting. Waste Manag. 29, 1152–1157 (2009). https://doi.org/10.1016/j.wasman.2008.06.030

    Article  Google Scholar 

  42. Martínez-Valdez, F.J., Martínez-Ramírez, C., Martínez-Montiel, L., Favela-Torres, E., Soto-Cruz, N.O., Ramírez-Vives, F., Saucedo-Castañeda, G.: Rapid mineralisation of the organic fraction of municipal solid waste. Bioresour. Technol. 180, 112–118 (2015). https://doi.org/10.1016/j.biortech.2014.12.083

    Article  Google Scholar 

  43. Martín-Gil, J., Navas-Gracia, L.M., Gómez-Sobrino, E., Correa-Guimaraes, A., Hernández-Navarro, S., Sánchez-Báscones, M., del Carmen Ramos-Sánchez, M.: Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the Prestige oil spill. Bioresour. Technol. 99, 1821–1829 (2008). https://doi.org/10.1016/j.biortech.2007.03.031

    Article  Google Scholar 

  44. Mohee, R., Mudhoo, A.: Analysis of the physical properties of an in-vessel composting matrix. Powder Technol. 155, 92–99 (2005). https://doi.org/10.1016/j.powtec.2005.05.051

    Article  Google Scholar 

  45. Mondini, C., Fornasier, F., Sinicco, T.: Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol. Biochem. 36, 1587–1594 (2004). https://doi.org/10.1016/j.soilbio.2004.07.008

    Article  Google Scholar 

  46. Münnich, K., Mahler, C.F., Fricke, K.: Pilot project of mechanical-biological treatment of waste in Brazil. Waste Manag. 26, 150–157 (2006). https://doi.org/10.1016/j.wasman.2005.07.022

    Article  Google Scholar 

  47. Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., Ezeogu, L.I.: Composting technology in waste stabilization: on the methods, challenges and future prospects. J. Environ. Manag. 190, 140–157 (2017). https://doi.org/10.1016/j.jenvman.2016.12.051

    Article  Google Scholar 

  48. Pacheco, J., Casado, S., Porras, S.: Exact methods for variable selection in principal component analysis: guide functions and pre-selection. Comput. Stat. Data Anal. 57, 95–111 (2013). https://doi.org/10.1016/j.csda.2012.06.014

    Article  MathSciNet  MATH  Google Scholar 

  49. Petric, I., Helić, A., Avdić, E.A.: Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresour. Technol. 117, 107–116 (2012). https://doi.org/10.1016/j.biortech.2012.04.046

    Article  Google Scholar 

  50. Ponsá, S., Gea, T., Alerm, L., Cerezo, J., Sánchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 28, 2735–2742 (2008). https://doi.org/10.1016/j.wasman.2007.12.002

    Article  Google Scholar 

  51. Rasapoor, M., Adl, M., Pourazizi, B.: Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: a practical case study in Tehran. Iran. J. Environ. Manag. 184 (Part 3), 528–534 (2016). https://doi.org/10.1016/j.jenvman.2016.10.029

    Article  Google Scholar 

  52. Ruggieri, L., Gea, T., Artola, A., Sánchez, A.: Air filled porosity measurements by air pycnometry in the composting process: a review and a correlation analysis. Bioresour. Technol. 100, 2655–2666 (2009). https://doi.org/10.1016/j.biortech.2008.12.049

    Article  Google Scholar 

  53. Saeed, M.O., Hassan, M.N., Mujeebu, M.A.: Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur. Malaysia. Waste Manag. 29, 2209–2213 (2009). https://doi.org/10.1016/j.wasman.2009.02.017

    Article  Google Scholar 

  54. Saldarriaga, J.F., Aguado, R., Morales, G.E.: Assessment of VOC emissions from municipal solid waste composting. Environ. Eng. Sci. 31, 300–307 (2014). https://doi.org/10.1089/ees.2013.0475

    Article  Google Scholar 

  55. Sharma, V.K., Canditelli, M., Fortuna, F., Cornacchia, G.: Processing of urban and agro-industrial residues by aerobic composting review. Energy Convers. Manag. 38, 453–478 (1997). https://doi.org/10.1016/S0196-8904(96)00068-4

    Article  Google Scholar 

  56. Som, M.-P., Lemée, L., Amblès, A.: Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresour. Technol. 100, 4404–4416 (2009). https://doi.org/10.1016/j.biortech.2009.04.019

    Article  Google Scholar 

  57. Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M., Jönsson, H.: Effects of pH and microbial composition on odour in food waste composting. Waste Manag. 33, 204–211 (2013). https://doi.org/10.1016/j.wasman.2012.09.017

    Article  Google Scholar 

  58. Tejada, M., García-Martínez, A.M., Parrado, J.: Relationships between biological and chemical parameters on the composting of a municipal solid waste. Bioresour. Technol. 100, 4062–4065 (2009). https://doi.org/10.1016/j.biortech.2009.03.034

    Article  Google Scholar 

  59. Tosun, I., Gönüllü, M.T., Arslankaya, E., Günay, A.: Co-composting kinetics of rose processing waste with OFMSW. Bioresour. Technol. 99, 6143–6149 (2008). https://doi.org/10.1016/j.biortech.2007.12.039

    Article  Google Scholar 

  60. Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M.: Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72, 169–183 (2000). https://doi.org/10.1016/S0960-8524(99)00104-2

    Article  Google Scholar 

  61. Turan, N.G., Coruh, S., Akdemir, A., Ergun, O.N.: Municipal solid waste management strategies in Turkey. Waste Manag. 29, 465–469 (2009). https://doi.org/10.1016/j.wasman.2008.06.004

    Article  Google Scholar 

  62. Wang, P., Changa, C.M., Watson, M.E., Dick, W.A., Chen, Y., Hoitink, H.A.J.: Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 36, 767–776 (2004). https://doi.org/10.1016/j.soilbio.2003.12.012

    Article  Google Scholar 

  63. Wang, X., Pan, S., Zhang, Z., Lin, X., Zhang, Y., Chen, S.: Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour. Technol. 224, 397–404 (2017). https://doi.org/10.1016/j.biortech.2016.11.076

    Article  Google Scholar 

  64. Wei, Y., Li, J., Shi, D., Liu, G., Zhao, Y., Shimaoka, T.: Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour. Conserv. Recycl. 122, 51–65 (2017). https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  65. Zbytniewski, R., Buszewski, B.: Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour. Technol. 96, 471–478 (2005). https://doi.org/10.1016/j.biortech.2004.05.018

    Article  Google Scholar 

  66. Zhang, D.-Q., He, P.-J., Jin, T.-F., Shao, L.-M.: Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation. Bioresour. Technol. 99, 8796–8802 (2008). https://doi.org/10.1016/j.biortech.2008.04.046

    Article  Google Scholar 

  67. Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y.: Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37, 2109–2116 (2005). https://doi.org/10.1016/j.soilbio.2005.03.013

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Department of Civil and Environmental Engineering of the Universidad de los Andes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Saldarriaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldarriaga, J.F., Gallego, J.L., López, J.E. et al. Selecting Monitoring Variables in the Manual Composting of Municipal Solid Waste Based on Principal Component Analysis. Waste Biomass Valor 10, 1811–1819 (2019). https://doi.org/10.1007/s12649-018-0208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0208-y

Keywords

Navigation