Waste and Biomass Valorization

, Volume 10, Issue 7, pp 1945–1955 | Cite as

Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium Myrtillus L.) Juice By-products

  • M. A. Varo
  • M. Jacotet-Navarro
  • M. P. SerratosaEmail author
  • J. Mérida
  • A.-S. Fabiano-Tixier
  • A. Bily
  • F. Chemat
Original Paper


In this paper, the effect of ultrasound assisted extraction (UAE) combined with stirring and conventional technique of maceration of wild bilberry juice by-products has been studied. Juice by-products were subjected to conventional maceration by stirring, and ultrasound probe using four different ultrasonic intensities (4.4, 9.4, 13.4 and 16.7 W cm− 2). The anthocyanins and flavonol profile of the obtained extracts were studied by HPLC-DAD. UAE resulted in a decrease of monomeric anthocyanins. However, the total phenolic compounds was higher when ultrasound was used and the extracts obtained with this “green” technology were more antioxidants than the extracts obtained by conventional maceration. Lab parameters and absorbances at 420 and 520 nm showed greater recovery of yellow and red compounds when the ultrasonic intensity was higher.

Graphical Abstract


Bilberry By-products Ultrasound Anthocyanins HPLC Antioxidant capacity 



The authors thank the financial support from the University of Cordoba, to carry out the stay of M Angeles Varo. Acknowledgments are also addressed to University of Avignon and Naturex for their help on the realization of this work.


  1. 1.
    Lee, J., Wrolstad, R.E.: Extraction of anthocyanins and polyphenolics from blueberry processing waste. J. Food Sci. 69(7), 564–573 (2004)CrossRefGoogle Scholar
  2. 2.
    Tabaraki, R., Heidarizadi, E., Benvidi, A.: Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep. Purif. Technol. 98, 16–23 (2012)CrossRefGoogle Scholar
  3. 3.
    Müller, D., Schantz, M., Richling, E.: High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. J. Food Sci. 77(4), 340–345 (2012)CrossRefGoogle Scholar
  4. 4.
    Peñarrieta, J.M., Tejeda, L., Mollinedo, P., Vila, J.L., Bravo, J.A.: Phenolic compounds in food. Bol. J. Chem. 31(2), 68–81 (2004)Google Scholar
  5. 5.
    Routray, W., Orsat, V.: Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Comp. Rev. Food Sci. Food Saf. 10, 303–320 (2011)CrossRefGoogle Scholar
  6. 6.
    Lin, Z., Fischer, J., Wicker, L.: Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. J. Food Chem. 194, 986–993 (2016)CrossRefGoogle Scholar
  7. 7.
    Nile, S.H., Park, S.W.: Edible berries: Bioactive components and their effect on human health. J. Nutr. 30(2), 134–144 (2014)CrossRefGoogle Scholar
  8. 8.
    Kong, J.-M., Chia, L.-S., Goh, N.-K., Chia, T.-F., Brouillard, R.: Analysis and biological activities of anthocyanins. Phytochemistry 64(5), 923–933 (2003)CrossRefGoogle Scholar
  9. 9.
    Pereira-Kechinski, C., Guimaraes, P.V.R., Noreña, C.P.Z., Tessaro, I.C., Marczak, L.D.F.: Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci. 75(2), 173–176 (2010)CrossRefGoogle Scholar
  10. 10.
    Jacotet-Navarro, M., Rombaut, N., Fabiano-Tixier, A.-S., Danguien, M., Bily, A., Chemat, F.: Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason. Sonochem. 27, 102–109 (2015)CrossRefGoogle Scholar
  11. 11.
    Pradal, D., Vauchel, P., Decossin, S., Dhulster, P., Dimitrov, K.: Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: extraction and energy consumption optimization. Ultrason. Sonochem. 32, 137–146 (2016)CrossRefGoogle Scholar
  12. 12.
    Chemat, F., Fabiano-Tixier, A.-S., Abert Vian, M., Allaf, T., Vorobiev, E.: Solvent-free extraction of food and natural products. Trends Analyt. Chem. 71, 157–168 (2015)CrossRefGoogle Scholar
  13. 13.
    Rombaut, N., Tixier, A.-S., Bily, A., Chemat, F.: Green extraction processes of natural products as tools for biorefinery. Biofuel Bioprod. Biorefin. 8, 530–544 (2014)CrossRefGoogle Scholar
  14. 14.
    Tiwari, B.K.: Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 71, 100–109 (2015)CrossRefGoogle Scholar
  15. 15.
    Petigny, L., Périno-Issartier, S., Wajsman, J., Chemat, F.: Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.). Int. J. Mol. Sci. 14, 5750–5764 (2013)CrossRefGoogle Scholar
  16. 16.
    Carrera, C., Ruiz-Rodríguez, A., Palma, M., Barroso, C.G.: Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta. 732, 100–104 (2012)CrossRefGoogle Scholar
  17. 17.
    Barba, F.J., Brianceau, S., Turk, M., Boussetta, N., Vorobiev, E.: Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioproc. Tech. 8, 1139–1148 (2015)CrossRefGoogle Scholar
  18. 18.
    Mason, T.J.: Large scale sonochemical processing: aspiration and actuality. Ultrason. Sonochem. 7(4), 145–149 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chemat, F., Khan, M.K.: Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18(4), 813–835 (2011)CrossRefGoogle Scholar
  20. 20.
    Stojanovic, J., Silva, J.L.: Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, color and chemical properties of rabbiteye blueberries. J. Food Chem. 101(3), 898–906 (2007)CrossRefGoogle Scholar
  21. 21.
    Pingret, D., Fabiano-Tixier, A.-S., Le Bourvellec, C., Renard, C.M.G.C., Chemat, F.: Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 111(1), 73–81 (2012)CrossRefGoogle Scholar
  22. 22.
    Martynenko, A., Chen, Y.: Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. J. Food Eng. 171, 44–51 (2016)CrossRefGoogle Scholar
  23. 23.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)Google Scholar
  24. 24.
    Minolta: Precise Color Communication: Color Control from Feeling to Instrumentation. Minolta report. Japan (1994)Google Scholar
  25. 25.
    Hutchings, J.B.: Food Color and Appearance. Blackie Academic and Professional Publication, UK (1994)CrossRefGoogle Scholar
  26. 26.
    Marquez, A., Serratosa, M.P., Varo, M.A., Merida, J.: Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of tempranillo grapes. J. Agric. Food Chem. 62(31), 7897 – 7902 (2014)Google Scholar
  27. 27.
    Monzocco, L., Anese, M., Nicoli, M.C.: Antioxidant properties of tea extracts as affected by processing. Lebensm. Wiss. Technol. 31, 694–698 (1998)CrossRefGoogle Scholar
  28. 28.
    He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., Yue, P.-X.: Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016)CrossRefGoogle Scholar
  29. 29.
    Galvan d’Alessandro, L., Kriaa, K., Nikov, I., Dimitrov, K.: Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 93, 42–47 (2012)CrossRefGoogle Scholar
  30. 30.
    Floros, J.D., Liang, H.: Acoustically assisted diffusion through membranes and biomaterials. Food Technol. 48, 79–84 (1994)Google Scholar
  31. 31.
    Pingret, D., Fabiano-Tixier, A.-S., Chemat, F.: Degradation during application of ultrasound in food processing: A review. Food Control. 31, 593–606 (2013)CrossRefGoogle Scholar
  32. 32.
    Portenlänger, G., Heusinger, H.: Chemical reactions induced by ultrasound and c-rays in aqueous solutions of L-ascorbic acid. Carbohydr. Res. 232, 291–301 (1992)CrossRefGoogle Scholar
  33. 33.
    Sadilova, E., Carle, R., Stintzing, F.C.: Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 51(12), 1461–1471 (2007)CrossRefGoogle Scholar
  34. 34.
    Tiwari, B.K., O’Donnell, C.P., Patras, A., Cullen, P.J.: Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. J. Agric. Food Chem. 56(21), 10071–10077 (2008)CrossRefGoogle Scholar
  35. 35.
    Caminiti, I.M., Noci, F., Muñoz, A., Whyte, P., Morgan, D.J., Cronin, D.A., Lyng, J.G.: Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem. 124(4), 1387–1392 (2011)CrossRefGoogle Scholar
  36. 36.
    Mikulic-Petkovsek, M., Slatnar, A., Stampar, F., Veberic, R.: HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 135(4), 2138–2146 (2012)CrossRefGoogle Scholar
  37. 37.
    Boulton, R.: The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am. J. Enol. Vitic. 52, 67–87 (2001)Google Scholar
  38. 38.
    Serratosa, M.P., López-Toledano, A., Mérida, J., Medina, M.: Changes in color and phenolic compounds during the raisining of grape cv. Pedro Ximénez. J. Agric. Food Chem. 56(8), 2810–2816 (2008)CrossRefGoogle Scholar
  39. 39.
    Zheng, W., Wang, S.Y.: Oxygen Radical Absorbing Capacity of Phenolics in Blueberries, Cranberries, Chokeberries, and Lingonberries. J. Agric. Food Chem. 51(2), 502–509 (2003)CrossRefGoogle Scholar
  40. 40.
    Wang, S.Y., Chen, C., Sciarappa, W., Wang, C.Y., Camp, M.J.: Fruit Quality, Antioxidant Capacity, and Flavonoid Content of Organically and Conventionally Grown Blueberries. J. Agric. Food Chem. 56(14), 5788–5794 (2008)CrossRefGoogle Scholar
  41. 41.
    Prior, R.L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M.: Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 46(7), 2686–2693 (1998)CrossRefGoogle Scholar
  42. 42.
    Namiesnik, J., Vearasilp, K., Kupska, M., Ham, K.-S., Kang, S.-G., Park, Y.-K., Barasch, D., Nemirovski, A., Gorinstein, A.: Antioxidant activities and bioactive components in some berries. Eur. Food Res. Technol. 237(5), 819–829 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química Agrícola, Facultad de Ciencias, Fruit ProcessingUniversidad de Córdoba, Ed, Marie CurieCórdobaSpain
  2. 2.Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Team ExtractionAvignonFrance
  3. 3.ORTESA, LabCom Naturex–Université d’AvignonAvignon CedexFrance
  4. 4.NaturexAvignon Cedex 9France

Personalised recommendations